Built with Alectryon, running Coq+SerAPI. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.

Output flags

This file tests various combinations of display flags. To compile:

alectryon display-flags.rst # reST → HTML; produces ‘display-flags.html’

n : nat, 2 * nsum n (λ x : nat, x) = n * (n + 1)

n : nat, 2 * nsum n (λ x : nat, x) = n * (n + 1)

2 * 0 = 0 * (0 + 1)
n: nat
IHn: 2 * nsum n (λ x : nat, x) = n * (n + 1)
2 * (S n + nsum n (λ x : nat, x)) = S n * (S n + 1)

2 * 0 = 0 * (0 + 1)
(λ n : nat, nat_ind (λ n0 : nat, 2 * nsum n0 (λ x : nat, x) = n0 * (n0 + 1)) ?Goal (λ (n0 : nat) (IHn : 2 * nsum n0 (λ x : nat, x) = n0 * (n0 + 1)), ?Goal0@{n:=n0}) n)

2 * 0 = 0 * (0 + 1)
reflexivity.
n: nat
IHn: 2 * nsum n (λ x : nat, x) = n * (n + 1)

2 * (S n + nsum n (λ x : nat, x)) = S n * (S n + 1)

2 * S n + 2 * nsum n (λ x : nat, x) = S n * (S n + 1)

2 * S n + n * (n + 1) = S n * (S n + 1)
(λ n : nat, nat_ind (λ n0 : nat, 2 * nsum n0 (λ x : nat, x) = n0 * (n0 + 1)) eq_refl (λ (n0 : nat) (IHn : 2 * nsum n0 (λ x : nat, x) = n0 * (n0 + 1)), eq_ind_r (λ n1 : nat, n1 = S n0 * (S n0 + 1)) (eq_ind_r (λ n1 : nat, 2 * S n0 + n1 = S n0 * (S n0 + 1)) ?Goal@{n:=n0} IHn) (PeanoNat.Nat.mul_add_distr_l 2 (S n0) (nsum n0 (λ x : nat, x)))) n)
ring. Qed.
nat : Set
bool : Set bool is not universe polymorphic Expands to: Inductive Coq.Init.Datatypes.bool
The term "true" has type "bool" while it is expected to have type "nat".
The reference asd was not found in the current environment.
Definition xyz := 123.
@id ?A : ?A?A where ?A : [ |- Type]
(* Visible *)
The term "true" has type "bool" while it is expected to have type "nat".

True
The command has indeed failed with message: The term "1" has type "nat" while it is expected to have type "True".
The command has indeed failed with message: Tactic failure.
Qed.
Ignoring implicit binder declaration in unexpected position. [unexpected-implicit-declaration,syntax]
(t := nat) (n : t), n ≥ 0 : Prop

Permutation l l' → List.In a l → List.In a l'
H: Permutation l l'
IHPermutation: List.In a l → List.In a l'
Hin: List.In a (x :: l)

gg
List.In a (x :: l')
l, l', l'': list A
H: Permutation l l'
H0: Permutation l' l''
IHPermutation1: List.In a l → List.In a l'
IHPermutation2: List.In a l' → List.In a l''
Hin: List.In a l
List.In a l''
Hin: False

H: Permutation l l'
IHPermutation: List.In a l → List.In a l'
Hin: x = a ∨ List.In a l
Hin: y = a ∨ x = a ∨ List.In a l
H: Permutation l l'
H0: Permutation l' l''
IHPermutation1: List.In a l → List.In a l'
IHPermutation2: List.In a l' → List.In a l''
Hin: List.In a l
all: tauto. Qed.