

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2016 - All rights reserved

MatrixSSL with external
cryptographic modules

 2 © INSIDE Secure - 2016 - All rights reserved

TABLE OF CONTENTS

1 INTRODUCTION .. 3

2 EXTERNAL CLIENT AUTHENTICATION .. 4

2.1 Description .. 4

2.2 Configuration ... 5

2.3 Using the feature in client applications .. 6

2.4 API REFERENCE .. 7

2.4.1 matrixSslNeedCvSignature ... 7

2.4.2 matrixSslGetHSMessagesHash .. 8

2.4.3 matrixSslSetCvSignature .. 9

2.4.4 psExt API .. 9

3 INTEGRATIONS WITH OTHER MODULES ... 10

 3 © INSIDE Secure - 2016 - All rights reserved

1 INTRODUCTION

INSIDE Secure MatrixSSL is a highly optimized SSL/TLS stack that is designed with compact code paths,
efficient memory usage and with support for asynchronous cryptography and network integration.

This document describes the available MatrixSSL integrations with external cryptographic modules. The
external client authentication feature (included in the MatrixSSL Commercial and FIPS Editions) is
documented in detail. Other external module integrations also exist; information about those is available
from INSIDE Secure on request. This manual assumes the reader knows how to setup standard
MatrixSSL client authentication.

 4 © INSIDE Secure - 2016 - All rights reserved

2 EXTERNAL CLIENT AUTHENTICATION

2.1 Description
MatrixSSL's external client authentication feature allows the client-side private key operation in TLS client
authentication—the signing of the handshake_messages hash in the CertificateVerify handshake
message—to be offloaded from MatrixSSL to an external module. The offloaded operation will be handled
asynchronously; the handshake is paused until the signature is ready.

The purpose of the CertificateVerify message is to prove that the client is in possession of the private key
pair of the public key contained in the client’s certificate. With the external client authentication feature, the
private key can remain confined to the external module and the signature can be computed securely within
the module boundary.

MatrixSSL provides an API for fetching the handshake_messages hash together with its length from
MatrixSSL and for sending back the computed signature. The client program will communicate with
MatrixSSL using the above mentioned API and will be responsible for operating the external module.

An example module (ext/exampleExtCvSigModule.c) and an integration with the MatrixSSL demo

client application (apps/ssl/client.c) is provided. The interface between the client and the external

module is not fixed; however, MatrixSSL provides an example interface (matrixssl/psExt.h), which is

used by the example client integration.

 5 © INSIDE Secure - 2016 - All rights reserved

2.2 Configuration
To use the external client authentication feature, the following preprocessor defines must be enabled:

 USE_CLIENT_SIDE_SSL (matrixsslConfig.h)

 USE_CLIENT_AUTH (matrixsslConfig.h)

 USE_EXT_CERTIFICATE_VERIFY_SIGNING (matrixsslConfig.h)

 USE_X509 (cryptoConfig.h)

 USE_CERT_PARSE (cryptoConfig.h)

To enable the feature at run-time for the next client session, set the useExtCvSigOp field in the session

options struct (sslSessOpts_t) to 1 before the struct is passed to matrixSslNewClientSession.

To test the feature with the example external module and the MatrixSSL demo client program integration,
the following additional define is needed:

 USE_EXT_EXAMPLE_MODULE (matrixsslConfig.h).

Note that the external client authentication feature only supports the TLS 1.0, 1.1 and 1.2 protocols. The
DTLS protocol is not supported when using external client authentication;

matrixSslNewClientSession will return an error code if both DTLS and external client authentication

flags are set in the session options.

 6 © INSIDE Secure - 2016 - All rights reserved

2.3 Using the feature in client applications
This section describes how the flow of processing must be changed in the client program using MatrixSSL
when the external client authentication feature is used. This section assumes MatrixSSL has been
configured as described in the "Configuration" section.

When external client authentication is desired, the extCvSigOp field must be set to 1 in the session

options provided to matrixsslNewClientSession.

Whenever matrixSslReceivedData returns PS_PENDING, the client must call

matrixSslNeedCvSignature; if the latter returns PS_TRUE, the handshake has been paused to give

the client a chance to ask the external module to compute the signature of the handshake_messages

hash.

The matrixSslGetHSMessagesHash function should then be used to fetch the hash to sign as well as

the hash length.

Once the external module has finished computing the signature, the signature must be passed onwards to

MatrixSSL with matrixSslSetCvSignature. The format of the signature is defined in the

documentation for matrixSslSetCvSignature.

Next, it is necessary to call matrixSslReceivedData again to encode the response flight containing the

CertificateVerify message. The encoded flight must then be sent over-the-wire as usual.

For some more details, please refer to the example integration in the MatrixSSL demo client application.

 7 © INSIDE Secure - 2016 - All rights reserved

2.4 API REFERENCE

2.4.1 matrixSslNeedCvSignature

PSPUBLIC int32_t matrixSslNeedCvSignature(ssl_t *ssl);

Check whether an external signature for the CertificateVerify message is needed.

When the SSL state machine is in the pending state (matrixSslReceivedData has returned

PS_PENDING), this function can be used to check whether the pending operation is the signing of the

handshake_messages hash for the CertificateVerify handshake message, using the client's private key.

If this function returns PS_TRUE, the handshake_messages hash should be fetched with

matrixSslGetHSMessagesHash, signed with the client's private key and copied to MatrixSSL using

matrixSslSetCvSignature.

Parameter Input/Output Description

ssl input Pointer to the SSL session struct

Return Value Description

PS_TRUE The SSL state machine is waiting for the CertificateVerify signature.

PS_FALSE The SSL state machine is not in the pending state or the pending operation is not the CertificateVerify
signature.

 8 © INSIDE Secure - 2016 - All rights reserved

2.4.2 matrixSslGetHSMessagesHash

PSPUBLIC int32_t matrixSslGetHSMessagesHash(ssl_t *ssl, unsigned char *hash,

size_t *hash_len);

Fetch the handshake_messages hash.

This function will fetch the hash of all handshake messages seen so far until the CertificateVerify message.
The signature of this hash is to be included in the CertificateVerify message.

This function will return the raw digest; it will not return a DigestInfo structure.

Parameter Input/Output Description

ssl input Pointer to the SSL session struct

hash output Pointer to a buffer where the handshake_messages hash will be copied.

hash_len input/output (In:) length of the hash buffer, (Out:) length of the handshake_messages hash.

Return Value Description

PS_SUCCESS The operation was successful.

PS_OUTPUT_LENGTH The output buffer is too small. The function should be called again with a larger output buffer.

PS_FAILURE The SSL state machine is in incorrect state

 9 © INSIDE Secure - 2016 - All rights reserved

2.4.3 matrixSslSetCvSignature

PSPUBLIC int32_t matrixSslSetCvSignature(ssl_t *ssl, const unsigned char* sig,

const size_t sig_len);

Assign the signature of the handshake_messages hash to the CertificateVerify message.

When RSA is used as the signature algorithm, the signature scheme to use depends on the TLS protocol
version. For TLS 1.2 (RFC 5246), the RSA signature scheme must be RSASSA-PKCS1-v1_5 (RFC 3447).
For TLS <1.2 (RFC 4346), PKCS #1 RSA Encryption with block type 1 encoding must be used. Note that
the RSASSA-PKCS1-v1_5 scheme requires the hash value to be wrapped within a DigestInfo structure
and the signature is computed over the DigestInfo. To determine which TLS version has been negotiated

for the current handshake, hash length returned by matrixSslGetHSMessagesHash can be used: hash

length 36 indicates TLS <1.2, other hash lengths indicate TLS 1.2.

When ECDSA is used as the signature algorithm, the signature must be computed according to ANS
X9.62 / RFC 4492.

Parameter Input/Output Description

ssl input Pointer to the SSL session struct

sig input The signature of the handshake_messages hash.

sig_len input The length of the signature.

Return Value Description

PS_SUCCESS The operation was successful.

PS_FAILURE The SSL state machine is in incorrect state.

PS_MEM_FAIL Out of memory.

2.4.4 psExt API

The psExt example API for facilitating communication between the client program and the external module

is described in the header file matrixssl/psExt.h. An example implementation of this API can be found

in ext/psext-example/exampleExtCvSigModule.c. This API is provided both as an example and

as a convenience. If the example module driver implements this API, it is straightforward to test external
client authentication using that module with the MatrixSSL demo client application

(apps/ssl/client.c).

 10 © INSIDE Secure - 2016 - All rights reserved

3 INTEGRATIONS WITH OTHER MODULES

Information on MatrixSSL integrations with other cryptographic modules and hardware, such as Intel
QuickAssist, Tilera MiCa and VaultSSL is available from INSIDE Secure on request.

