

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2017 - All rights reserved

 MatrixSSL 3.9 APIs

 2 © INSIDE Secure - 2017 - All rights reserved

TABLE OF CONTENTS

1 OVERVIEW... 5

1.1 Source Code Package .. 5

1.1.1 Package Structure .. 5

1.1.2 Integer Size .. 5

1.1.3 Compile-Time Features .. 5

1.1.4 Cipher Suites .. 6

1.1.5 Matrix Deterministic Memory .. 6

2 MATRIXSSL API ... 7

2.1 matrixSslOpen ... 7

2.2 matrixSslNewKeys .. 7

2.3 matrixSslLoadRsaKeys ... 8

2.4 matrixSslLoadRsaKeysMem ... 10

2.5 matrixSslLoadEcKeys ... 11

2.6 matrixSslLoadEcKeysMem ... 13

2.7 matrixSslLoadPkcs12 .. 14

2.8 matrixSslLoadSessionTicketKeys ... 15

2.9 matrixSslSetSessionTicketCallback .. 17

2.10 matrixSslNewSessionId .. 17

2.11 matrixSslClearSessionId ... 18

2.12 matrixSslDeleteSessionId ... 18

2.13 matrixSslNewClientSession .. 19

2.14 matrixSslNewServerSession ... 21

2.15 matrixSslGetReadbuf .. 22

2.16 matrixSslReceivedData ... 23

2.17 matrixSslGetOutdata ... 25

2.18 matrixSslProcessedData ... 26

2.19 matrixSslSentData .. 27

2.20 matrixSslGetWritebuf .. 28

2.21 matrixSslEncodeWritebuf .. 29

2.22 matrixSslEncodeToOutdata .. 29

2.23 matrixSslEncodeClosureAlert .. 30

2.24 matrixSslGetAnonStatus ... 31

2.25 matrixSslEncodeRehandshake ... 31

2.26 matrixSslDisableRehandshakes .. 33

2.27 matrixSslReEnableRehandshakes .. 33

2.28 matrixSslSetCipherSuiteEnabledStatus .. 34

2.29 matrixSslDeleteSession .. 34

2.30 matrixSslDeleteSessionTicketKey ... 35

2.31 matrixSslDeleteKeys ... 35

2.32 matrixSslClose .. 35

2.33 matrixSslNewHelloExtension .. 36

 3 © INSIDE Secure - 2017 - All rights reserved

2.34 matrixSslLoadHelloExtension .. 36

2.35 matrixSslDeleteHelloExtension ... 37

2.36 matrixSslIsSessionCompressionOn .. 38

2.37 matrixSslRegisterSNICallback .. 38

2.38 matrixSslCreateSNIext .. 39

2.39 matrixSslRegisterALPNCallback ... 39

2.40 matrixSslCreateALPNext... 40

2.41 matrixSslLoadOCSPResponse ... 41

2.42 matrixSslWriteOCSPRequest .. 42

3 MATRIXDTLS API ... 43

3.1 Debug Configuration ... 43

3.2 Integration Notes ... 43

3.3 matrixDtlsGetOutdata .. 43

3.4 matrixDtlsSentData ... 44

3.5 matrixDtlsSetPmtu .. 45

3.6 matrixDtlsGetPmtu .. 45

4 MATRIXSSL X.509 API ... 47

5 SESSION OPTIONS ... 48

5.1 TLS version ... 48

5.2 Stateless Session Ticket Resumption ... 48

5.3 Extended Master Secret .. 49

5.4 Maximum Fragment Length .. 50

5.5 Truncated HMAC .. 50

5.6 Elliptic Curve Specification .. 50

5.7 Trusted CA Indication .. 51

5.8 OCSP Revocation ... 51

5.9 User Defined Opaque TLS Session Pointer .. 52

5.10 User Defined Opaque Memory Allocation Pointer ... 52

5.11 User Defined TLS Buffer Memory Pool ... 52

5.12 Peer certificate retention ... 53

5.13 Certificate validation options ... 53

5.13.1 Maximum peer certificate chain depth .. 53

5.13.2 Expected name matching options ... 53

5.14 Session Options Summary Table .. 54

6 THE CERTIFICATE VALIDATION CALLBACK FUNCTION ... 57

6.1 Application Layer Certificate Acceptance .. 57

6.2 psX509Cert_t Structure ... 60

7 QUICK REFERENCE .. 64

APPENDIX A - LIST OF TABLES.. 65

 4 © INSIDE Secure - 2017 - All rights reserved

 5 © INSIDE Secure - 2017 - All rights reserved

1 OVERVIEW

This document is the technical reference for the MatrixSSL and MatrixDTLS C code library APIs. The
functions documented here can be used to add server or client SSL/TLS security to any new or existing
application on any hardware platform using any data transport mechanism.

This document is primarily intended for the software developer performing MatrixSSL integration into their
custom application but is also a useful reference for anybody wishing to learn more about MatrixSSL or the
SSL/TLS protocol in general.

For additional information on how to implement these APIs in an application, see the MatrixSSL
Developer’s Guide included in this package.

1.1 Source Code Package

MatrixSSL is distributed as a C source code package with compile environments for the most popular
development platforms.

1.1.1 Package Structure

MatrixSSL’s public interface function prototypes are defined in the matrixsslApi.h file. Applications
compiling with MatrixSSL APIs only have to include this single header file.

#include “matrixsslApi.h”

The matrixsslApi.h file includes other package-specific header files using relative paths based on the
default directory structure. Optional product features are enabled and disabled by toggling documented
#defines. There is no need to restructure the include logic within the header files or to move the header
files from the default directory locations when configuring features.

The C data types used by functions in matrixsslApi.h come from a variety of module headers in the
package directories. MatrixSSL API custom data types with publicly accessible members are documented
where applicable.

1.1.2 Integer Size

MatrixSSL was designed without dependency on platform specific integer sizes. MatrixSSL uses the

int32_t and uint32_t type definitions throughout the code to ensure compatibility. These typedefs are

contained in the core/osdep.h header file. This layer enables global redefinitions for platforms that do not

support 32-bit integer types as the native int type.

1.1.3 Compile-Time Features

MatrixSSL contains a set of optional features that are configurable at compile time. These, and how to use
the example configurations provided, are described in the MatrixSSL Developer’s Guide. Please consult
that document for further information.

 6 © INSIDE Secure - 2017 - All rights reserved

1.1.4 Cipher Suites

The user can enable or disable any of the supported cipher suites at compile-time from the
matrixsslConfig.h header file. Simply comment out the cipher suites that are not needed. If run-time

disabling of cipher suites is required, matrixSslSetCipherSuiteEnabledStatus can be used to disable

(and re-enable) ciphers that have been compiled into the library.

The individual cryptographic algorithms may be enabled and disabled through the cryptoConfig.h header
file for fine-tuning of library size. Below is a representative list of cipher suites along with their
cryptographic requirements. The comprehensive list of which cipher suites are supported in the specific
MatrixSSL package can be found in the matrixsslConfig.h file.

1.1.5 Matrix Deterministic Memory

In commercial versions of MatrixSSL enabling USE_MATRIX_MEMORY_MANAGEMENT in coreConfig.h will

activate the deterministic memory feature of the library. Every memory allocation in the library will be
confined to a specific memory pool that has a regulated lifecycle. The feature enables tight control over
memory usage.

Any APIs in this document that refer to "memory pools" or references to psPool_t structures or

poolUserPtr parameters are related to this memory feature and may be ignored by customers using the

open source version of the software and commercial users that do not enable
USE_MATRIX_MEMORY_MANAGEMENT.

The Matrix Deterministic Memory document contains the details.

Sample Cipher Suites in matrixsslConfig.h cryptoConfig.h Dependencies

USE_TLS_RSA_WITH_AES_256_CBC_SHA USE_RSA USE_AES

USE_SSL_RSA_WITH_3DES_EDE_CBC_SHA USE_RSA USE_3DES

USE_SSL_RSA_WITH_RC4_128_SHA USE_RSA USE_ARC4

USE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA USE_DH USE_RSA USE_AES

USE_TLS_DH_anon_WITH_AES_256_CBC_SHA USE_DH USE_AES

USE_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 USE_DH USE_RSA USE_AES USE_SHA256

USE_TLS_RSA_WITH_AES_256_CBC_SHA256 USE_RSA USE_AES USE_SHA256

USE_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA USE_ECC USE_AES

USE_TLS_DHE_PSK_WITH_AES_256_CBC_SHA USE_DH USE_AES

USE_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA USE_ECC USE_RSA USE_AES

USE_TLS_PSK_WITH_AES_256_CBC_SHA USE_AES

USE_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 USE_ECC USE_AES_GCM USE_SHA384

 7 © INSIDE Secure - 2017 - All rights reserved

2 MATRIXSSL API

2.1 matrixSslOpen

int32 matrixSslOpen();

Return Value Description

PS_SUCCESS Successful initialization

PS_FAILURE Failed core module initialization. Can’t continue

Servers and Clients

This is the initialization function for the MatrixSSL library. Applications must call this function as part of
their own initialization process before any other MatrixSSL functions are called.

Memory Profile

This function internally allocates memory that is freed during matrixSslClose

2.2 matrixSslNewKeys

int32 matrixSslNewKeys(sslKeys_t **keys, void *memAllocUserPtr);

Parameter Input/Output Description

keys input/output Internally allocated structure to use when loading key material

poolUserPtr input Optional user context for the creation of the memory pool that will hold the key material. Only
relevant to commercial versions when USE_MATRIX_MEMORY_MANAGEMENT is enabled.
NULL otherwise.

Return Value Description

PS_SUCCESS Successful key storage initialization

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

Servers and Clients

This is a necessary function that all implementations must call before loading in the specific key material
that will be used in the SSL handshake.

After allocating the key structure, the user will load custom key material from files (or memory) using

matrixSslLoadRsaKeys, matrixSslLoadEcKeys, matrixSslLoadPkcs12, matrixSslLoadDhParams,

and/or matrixSslLoadPsk. Loading RSA/ECC keys or DH parameters may be done once for each keys

context. Multiple calls can be made to load pre-shared keys for a single keys context.

Once loaded with the key material, the keys structure will be passed to matrixSslNewClientSession or

matrixSslNewServerSession to associate those keys with the SSL session.

Memory Profile

This function internally allocates memory that is freed during matrixSslDeleteKeys. The caller does not

need to free the keys parameter if this function does not return PS_SUCCESS.

The poolUserPtr value will be passed as the userPtr to psOpenPool when creating the dedicated

memory pool for this key material.

 8 © INSIDE Secure - 2017 - All rights reserved

2.3 matrixSslLoadRsaKeys

int32 matrixSslLoadRsaKeys(sslKeys_t *keys, const char *certFile,

 const char *privFile, const char *privPass,

 const char *trustedCAFiles);

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewClientSession or matrixSslNewServerSession to

associate key material with a SSL session.

certFile input The fully qualified filename(s) of the PEM formatted X.509 RSA identity certificate for this SSL
peer. For in-memory support, see matrixSslLoadRsaKeysMem

This parameter is always relevant to servers. Clients will want to supply an identity certificate

and private key if supporting client authentication. NULL otherwise.

privFile input The fully qualified filename of the PEM formatted PKCS#1 or PKCS#8 private RSA key that
was used to sign the certFile.

This parameter is always relevant to servers. Clients will want to supply an identity certificate
and private key if supporting client authentication. NULL otherwise.

privPass input The plaintext password used to encrypt the private key file. NULL if private key file is not

password protected or unused. MatrixSSL supports the MD5 PKCS#5 2.0 PBKDF1 password
standard.

trustedCAFiles input The fully qualified filename(s) of the trusted root certificates (Certificate Authorities) for this
SSL peer.

This parameter is always relevant to clients. Servers will want to supply a CA if requesting
client authentication. NULL otherwise.

Return Value Test Description

PS_SUCCESS 0 Success. All input files parsed and the keys parameter is available for use in session
creation

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_FAILURE < 0 Failure. Password protected decoding failed. Likey incorrect password provided

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate material

Servers and Clients

This function is called to load the RSA certificates and private key files from disk that are needed for SSL

client-server authentication. The key material is loaded into the keys parameter for input into the

subsequent session creation APIs matrixSslNewClientSession or matrixSslNewServerSession. This

API can be called at most once for a given sslKeys_t parameter.

A standard SSL connection performs one-way authentication (client authenticates server) so the
parameters to this function are specific to the client/server role of the application. The certFile,

privFile, and privPass parameters are server specific and should identify the certificate and private key

file for that server. The certFile and privFile parameters represent the two halves of the public key so

they must both be non-NULL values if either is used.

The trustedCAFiles parameter is client specific and should identify the trusted root certificates that will

be used to validate the certificates received from a server. Note that version 1 root certificates can only be

loaded when ALLOW_VERSION_1_ROOT_CERT_PARSE is defined in cryptoConfig.h.

Calling this function is a resource intensive operation because of the file access, parsing, and internal
public key authentications required. For this reason, it is advised that this function be called once per set
of key files for a given application. All new sessions associated with the certificate material can reuse the

 9 © INSIDE Secure - 2017 - All rights reserved

existing key pointer. At application shutdown the user must free the key structure using

matrixSslDeleteKeys.

Client Authentication

If client authentication functionality is desired, all parameters to this function become relevant to both

clients and servers. The certFile and privFile parameters are used to specify the identity certificate of

the local peer. Likewise, each entity will need to supply a trustedCAcertFile parameter that lists the

trusted CAs so that the connecting certificates may be authenticated. It is easiest to think of client
authentication as a mirror image of the normal server authentication when considering how certificate and
CA files are deployed.

It is possible to configure a server to engage in a client authentication handshake without loading CA files.

Enable the SERVER_CAN_SEND_EMPTY_CERT_REQUEST define in matrixsslConfig.h to allow the server to

send an empty CertificateRequest message. The server can then use the certificate callback function to
perform a custom authentication on the certificate returned from the client.

The MatrixSSL library must be compiled with USE_CLIENT_AUTH defined in matrixsslConfig.h to enable

client authentication support.

Multiple CA Certificates and Certificate Chaining

It is not uncommon for a server to work from a certificate chain in which a series of certificates form a child-
to-parent hierarchy. It is even more common for a client to load multiple trusted CA certificates if
numerous servers are being supported.

There are two ways to pass multiple certificates to the matrixSslLoadRsaKeys API. The first is to pass a

semi-colon delimited list of files to the certFile or trustedCAcertFiles parameters. The second way is

to append several PEM certificates into a single file and pass that file to either of the two parameters.

Regardless of which way is chosen, the certFile parameter MUST be passed in a child-to-parent order.

The first certificate parsed in the chain MUST be the child-most certificate and each subsequent certificate
must be the parent (issuer) of the former. There must only ever be one private key file passed to this
routine and it must correspond with the child-most certificate.

Encrypted Private Keys

It is strongly recommended that private keys be password protected when stored in files. The privPass

parameter of this API is the plaintext password that will be used if the private key is encrypted. MatrixSSL
supports the MD5 based PKCS#5 2.0 PBKDF1 standard for password encryption. The most common way
a password is retrieved is through user input during the initialization of an application.

RSA-PSS Signed Certificates

The stronger RSASSA-PSS signature standard is staring to appear in X.509 certificates as an upgrade to
the standard PKCS#1 v1.5 scheme. To include support for RSA-PSS signatures in certificates, enable

USE_PKCS1_PSS in crypto/cryptoConfig.h

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

Define Dependencies

MATRIX_USE_FILE_SYSTEM Must be enabled in platform compile options

USE_SERVER_SIDE_SSL Optionally enable in matrixsslConfig.h for SSL server support

USE_CLIENT_SIDE_SSL Optionally enable in matrixsslConfig.h for SSL client support

USE_PKCS5 Optionally enable in cryptoConfig.h to support password encrypted private keys

USE_PKCS8 Optionally enable in cryptoConfig.h to support PKCS#8 formatted private keys

 10 © INSIDE Secure - 2017 - All rights reserved

USE_CLIENT_AUTH Optionally enable in matrixsslConfig.h to support client authentication

2.4 matrixSslLoadRsaKeysMem

int32 matrixSslLoadRsaKeysMem(sslKeys_t *keys,

 const unsigned char *certBuf, int32 certLen,

 const unsigned char *privBuf, int32 privLen,

 const unsigned char *trustedCABuf, int32 trustedCALen);

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will

become input to matrixSslNewClientSession or

matrixSslNewServerSession to associate key material with a SSL session.

certBuf input The X.509 ASN.1 identity certificate for this SSL peer. For file-based support, see
matrixSslLoadRsaKeys

This parameter is always relevant to servers. Clients will want to supply an identity

certificate and private key if supporting mutual authentication. NULL otherwise.

certLen input Byte length of certBuf

privBuf input The PKCS#1 or PKCS#8 private RSA key that was used to sign the certBuf.

This parameter is always relevant to servers. Clients will want to supply an identity

certificate and private key if supporting mutual authentication. NULL otherwise.

privLen input Byte length of privBuf

trustedCABuf input The X.509 ASN.1 stream of the trusted root certificates (Certificate Authorities) for this SSL
peer.

This parameter is always relevant to clients. Servers will want to supply a CA if requesting
mutual authentication. NULL otherwise.

trustedCALen input Byte length of trustedCABuf

Return Value Test Description

PS_SUCCESS 0 Success. All input buffers parsed successfully and the keys parameter is available for use
in session creation

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate material

Servers and Clients

This function is the in-memory equivalent of the matrixSslLoadRsaKeys API to support environments

where the certificate material is not stored as files on disk. Please consult the information above about

matrixSslLoadRsaKeys for detailed information on how clients and servers should manage the certificate

and private key parameters. This API can be called at most once for a given sslKeys_t parameter.

The buffers for the certificates and private key must be in the native ASN.1 format of the X.509 v3 and
PKCS#1/PKCS#8 standards, respectively. Typically, the “.der” file extension is used for certificate material
in this binary format.

There is no password protection support for private key buffers. It is recommended that the user
implement secure storage for the private key material.

Multiple CA Certificates and Certificate Chaining

This in-memory version of the key parser also supports multiple CAs and/or certificate chains. Simply

append the ASN.1 certificate streams together for either the certBuf or trustedCAbuf parameters. If

 11 © INSIDE Secure - 2017 - All rights reserved

using a certificate chain in the certBuf parameter the order of the certificates still MUST be in child-to-

parent order with the privBuf being the key associated with the child-most certificate.

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

Define Dependencies

USE_SERVER_SIDE_SSL Optionally enable in matrixsslConfig.h for SSL server support

USE_CLIENT_SIDE_SSL Optionally enable in matrixsslConfig.h for SSL client support

USE_PKCS8 Optionally enable in cryptoConfig.h to support PKCS#8 formatted private keys

USE_CLIENT_AUTH Optionally enable in matrixsslConfig.h to support client authentication

2.5 matrixSslLoadEcKeys

int32 matrixSslLoadEcKeys(sslKeys_t *keys, const char *certFile,

const char *privFile, const char *privPass,

const char *trustedCAFiles);

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewClientSession or matrixSslNewServerSession to

associate key material with a SSL session.

certFile input The fully qualified filename(s) of the PEM formatted X.509 identity certificate for this SSL peer.

For in-memory support, see matrixSslLoadEcKeysMem

This parameter is always relevant to servers. Clients will want to supply an identity certificate

and private key if supporting client authentication. NULL otherwise.

privFile input The fully qualified filename of the PEM formatted private EC key that was used to sign

certFile. Supported formats are PKCS# 8 or “SEC1: Elliptical Curve Cryptography” at

www.secg.org.

This parameter is always relevant to servers. Clients will want to supply an identity certificate
and private key if supporting client authentication. NULL otherwise.

privPass input The plaintext password used to encrypt the private key file. NULL if private key file is not

password protected or unused. MatrixSSL supports the MD5 PKCS#5 2.0 PBKDF1 password
standard.

trustedCAFiles input The fully qualified filename(s) of the trusted root certificates (Certificate Authorities) for this
SSL peer.

This parameter is always relevant to clients. Servers will want to supply a CA if requesting
client authentication. NULL otherwise.

Return Value Test Description

PS_SUCCESS 0 Success. All input files parsed and the keys parameter is available for use in session
creation

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_FAILURE < 0 Failure. Password protected decoding failed. Likey incorrect password provided

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate material

Servers and Clients

 12 © INSIDE Secure - 2017 - All rights reserved

This function is called to load the ECC certificates and private key files from disk that are needed for SSL

client-server authentication. The key material is loaded into the keys parameter for input into the

subsequent session creation APIs matrixSslNewClientSession or matrixSslNewServerSession. This

API can be called at most once for a given sslKeys_t parameter.

A standard SSL connection performs one-way authentication (client authenticates server) so the

parameters to this function are specific to the client/server role of the application. The certFile,

privFile, and privPass parameters are server specific and should identify the certificate and private key

file for that server. The certFile and privFile parameters represent the two halves of the public key so

they must both be non-NULL values if either is used.

The trustedCAFiles parameter is client specific and should identify the trusted root certificates that will

be used to validate the certificates received from a server. Note that version 1 root certificates can only be

loaded when ALLOW_VERSION_1_ROOT_CERT_PARSE is defined in cryptoConfig.h.

Calling this function is a resource intensive operation because of the file access, parsing, and internal
public key authentications required. For this reason, it is advised that this function be called once per set
of key files for a given application. All new sessions associated with the certificate material can reuse the
existing key pointer. At application shutdown the user must free the key structure using
matrixSslDeleteKeys.

Client Authentication

If client authentication functionality is desired, all parameters to this function become relevant to both

clients and servers. The certFile and privFile parameters are used to specify the identity certificate of

the local peer. Likewise, each entity will need to supply a trustedCAcertFile parameter that lists the

trusted CAs so that the certificates may be authenticated. It is easiest to think of client authentication as a
mirror image of the normal server authentication when considering how certificate and CA files are
deployed.

It is possible to configure a server to engage in a client authentication handshake without loading CA files.

Enable the SERVER_CAN_SEND_EMPTY_CERT_REQUEST define in matrixsslConfig.h to allow the server to

send an empty CertificateRequest message. The server can then use the certificate callback function to
perform a custom authentication on the certificate returned from the client.

The MatrixSSL library must be compiled with USE_CLIENT_AUTH defined in matrixsslConfig.h to enable

client authentication support.

Multiple CA Certificates and Certificate Chaining

It is not uncommon for a server to work from a certificate chain in which a series of certificates form a child-
to-parent hierarchy. It is even more common for a client to load multiple trusted CA certificates if
numerous servers are being supported.

There are two ways to pass multiple certificates to the matrixSslLoadRsaKeys API. The first is to pass a

semi-colon delimited list of files to the certFile or trustedCAcertFiles parameters. The second way is

to append several PEM certificates into a single file and pass that file to either of the two parameters.

Regardless of which way is chosen, the certFile parameter MUST be passed in a child-to-parent order.

The first certificate parsed in the chain MUST be the child-most certificate and each subsequent certificate
must be the parent (issuer) of the former. There must only ever be one private key file passed to this
routine and it must correspond with the child-most certificate.

Encrypted Private Keys

It is strongly recommended that private keys be password protected when stored in files. The privPass

parameter of this API is the plaintext password that will be used if the private key is encrypted. MatrixSSL
supports an MD5 based PKCS#5 2.0 PBKDF1 standard for password encryption. The most common way
a password is retrieved is through user input during the initialization of an application.

 13 © INSIDE Secure - 2017 - All rights reserved

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

2.6 matrixSslLoadEcKeysMem

int32 matrixSslLoadEcKeysMem(sslKeys_t *keys, unsigned char *certBuf,

int32 certLen, unsigned char *privBuf, int32 privLen,

unsigned char *trustedCABuf, int32 trustedCALen);

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will

become input to matrixSslNewClientSession or

matrixSslNewServerSession to associate key material with a SSL session.

certBuf input The X.509 ASN.1 identity certificate for this SSL peer. For file-based support, see
matrixSslLoadEcKeys

This parameter is always relevant to servers. Clients will want to supply an identity

certificate and private key if supporting mutual authentication. NULL otherwise.

certLen input Byte length of certBuf

privBuf input The PKCS#8 or “SEC1: Elliptical Curve Cryptography” private EC key that was used to sign
the certBuf.

This parameter is always relevant to servers. Clients will want to supply an identity

certificate and private key if supporting mutual authentication. NULL otherwise.

privLen input Byte length of privBuf

trustedCABuf input The X.509 ASN.1 stream of the trusted root certificates (Certificate Authorities) for this SSL
peer.

This parameter is always relevant to clients. Servers will want to supply a CA if requesting
mutual authentication. NULL otherwise.

trustedCALen input Byte length of trustedCABuf

Return Value Test Description

PS_SUCCESS 0 Success. All input buffers parsed successfully and the keys parameter is available for use
in session creation

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate material

Servers and Clients

This function is the in-memory equivalent of the matrixSslLoadEcKeys API to support environments

where the certificate material is not stored as files on disk. Please consult the documentation for

matrixSslLoadEcKeys for detailed information on how clients and servers should manage the certificate

and private key parameters. This API can be called at most once for a given sslKeys_t parameter.

There is no password protection support for private key buffers. It is recommended that the user
implement secure storage for the private key material.

Multiple CA Certificates and Certificate Chaining

This in-memory version of the key parser also supports multiple CAs and/or certificate chains. Simply

append the ASN.1 certificate streams together for either the certBuf or trustedCAbuf parameters. If

 14 © INSIDE Secure - 2017 - All rights reserved

using a certificate chain in the certBuf parameter the order of the certificates still MUST be in child-to-

parent order with the privBuf being the key associated with the child-most certificate.

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

2.7 matrixSslLoadPkcs12

int32 matrixSslLoadPkcs12(sslKeys_t *keys,

 const unsigned char *p12File,

 const unsigned char *importPass, int32 ipasslen,

 const unsigned char *macPass, int32 mpasslen,

 int32 flags);

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewClientSession or matrixSslNewServerSession to

associate key material with a SSL session.

p12File input The fully qualified filename(s) of the PKCS#12 file.

importPass input The plaintext import password used to decrypt p12File

ipassLen input Byte length of the importPass parameter

macPass input Optional plaintext password used to verify the MAC of the PKCS#12 file. In most cases, the MAC

password is identical to the import password and if set to NULL the import password will be used

by default.

mpassLen input The byte length of the macPass parameter

flags input Reserved. Pass a 0

Return Value Test Description

PS_SUCCESS 0 Success. File parsed and the keys parameter is available for use

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported algorithm in file material

Servers

This function is called to load certificate and key material from a PKCS#12 file. The PKCS#12 standard
enables certificates and private keys to be stored together in a single file. This function requires that only a
single private key is present in the PKCS#12 file and includes the accompanying certificate (or certificate
chain).

The sslKeys_t output is loaded into the keys parameter for input into the subsequent session creation API

matrixSslNewServerSession. This API can be called at most once for a given sslKeys_t parameter.

Calling this function is a resource intensive operation because of the file access, parsing, and internal
public key authentications required. For this reason, it is advised that this function be called once per set
of key files for a given application. All new sessions associated with the certificate material can reuse the
existing key pointer. At application shutdown the user must free the key structure using

matrixSslDeleteKeys.

 15 © INSIDE Secure - 2017 - All rights reserved

Client Authentication

Clients may use this function to load certificates and the private key if engaging in a client authentication
handshake.

However, for both server and client cases the counterpart Certificate Authority files must be loaded

separately using the matrixSslLoadRsaKeys function because this PKCS#12 API does not support CA

files. In this case, the same sslKeys_t parameter should be used in both APIs.

The MatrixSSL library must be compiled with USE_CLIENT_AUTH defined in matrixsslConfig.h to enable

client authentication support.

Certificate Chaining

It is not uncommon for a server to work from a certificate chain in which a series of certificates form a child-
to-parent hierarchy. The PKCS#12 file must have the certificate chain in a child-to-parent order and the
private key must be for the child-most certificate.

Supported Integrity and Encryption Algorithms

The parser supports PKCS#12 files that are encoded in the standard “password integrity” and “password
privacy” modes. If you require public-key modes please contact Inside Secure.

Each certificate and private key will be wrapped within a “password privacy” algorithm. The supported
algorithms are:

o pbeWithSHAAnd3-KeyTripleDES-CBC

o pbewithSHAAnd40BitRC2-CBC

The use of these algorithms is historical and certificates are generally encrypted with RC2 and private keys
are generally encrypted with 3DES. Please contact INSIDE if you require additional “password privacy”
algorithms.

Memory Profile

The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

Define Dependencies

USE_SERVER_SIDE_SSL Optionally enable in matrixsslConfig.h for SSL server support

USE_CLIENT_SIDE_SSL Optionally enable in matrixsslConfig.h for SSL client support

USE_PKCS12 Must enable in cryptoConfig.h to support PKCS#12

USE_CLIENT_AUTH Optionally enable in matrixsslConfig.h to support client authentication

MATRIX_USE_FILE_SYSTEM Must define in platform build environment for file access

USE_RC2 Optionally enable in cryptoConfig.h if RC2 encryption is needed

2.8 matrixSslLoadSessionTicketKeys

int32 matrixSslLoadSessionTicketKeys(sslKeys_t *keys,

 16 © INSIDE Secure - 2017 - All rights reserved

 const unsigned char name[16],

 const unsigned char *symkey, short symkeyLen,

 const unsigned char *hashkey, short hashkeyLen);

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewServerSession to associate key material with a SSL session.

name input The 16 byte name assigned to the key pair. It should be a randomly generated string to help
avoid collisions between servers

symkey input The AES key for ticket encryption/decryption.

symkeyLen input MUST be 16 or 32 for AES-128 or AES-256, respectively

hashkey input The HMAC-SHA256 key for ticket authentication

hashkeyLen input MUST be 32 bytes for SHA-256

Return Value Test Description

PS_SUCCESS 0 Success. Keys loaded and available for use

PS_LIMIT_FAIL < 0 Failure. List full or one of the length parameters was not an accepted value

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

Servers

This function is called to load an AES and HMAC-SHA key pair for use in stateless session resumption as
specified in RFC 4507. The keys are used to encode a session resumption ticket that is given to a
connected client and used to decode the ticket when a client later attempts a resumed session.

Calling this function effectively enables the stateless session ticket feature for any server session that uses

the sslKeys_t context with matrixSslNewServerSession.

This function can be called many times for a given sslKeys_t context and each call will add a key to the

end of a single-linked list. The first key in the list will always be the key used to encrypt newly issued
session tickets. When decrypting a session ticket, the entire list will be searched to locate the encrypting
key.

Keys can be deleted using matrixSslDeleteSessionTicketKey.

The SSL_SESSION_TICKET_LIST_LEN define in matrixsslConfig.h limits the length of the internal cache. If

the limit is hit this function will return PS_LIMIT_FAIL and the caller can use

matrixSslDeleteSessionTicketKey to make room if desired.

A user callback can be optionally registered to notify each time a session ticket is received to allow user

intervention. The callback is registered using matrixSslSetSessionTicketCallback and is documented

below.

Ticket Notes

The value of SSL_SESSION_ENTRY_LIFE in matrixsslConfig.h is used as the lifetime when generating a

ticket.

The platform MUST implement the psGetTime function as documented in the Porting Guide so that the

int32 return value is the elapsed seconds from some epoch. This API is used to store the timestamp in the
encrypted ticket and to retrieve the current time when decrypting the ticket to determine expiration

The cryptographic primitives used for ticket encoding is AES-128/256-CBC and HMAC-SHA256.

Interaction with cached session ID mechanism

If the stateless session ticket mechanism is used during the SSL handshake the server WILL NOT cache
the session using the standard session ID mechanism.

 17 © INSIDE Secure - 2017 - All rights reserved

Clients

Clients that wish to use the stateless session resumption mechanism must set the ticketResumption

member of the sslSessOpts_t structure to 1 when calling matrixSslNewClientSession.

Define Dependencies

USE_SERVER_SIDE_SSL Enable in matrixsslConfig.h for SSL server support

USE_MULTITHREADING Optionally enable in coreConfig.h if multiple server threads will be accessing key list

USE_STATELESS_SESSION_TICKETS Enable in matrixsslConfig.h

SSL_SESSION_ENTRY_LIFE Configure in matrixsslConfig.h

USE_AES Enable in cryptoConfig.h

USE_HMAC Enable in cryptoConfig.h

USE_SHA256 Enable in cryptoConfig.h

2.9 matrixSslSetSessionTicketCallback

void matrixSslSetSessionTicketCallback(sslKeys_t *keys,

 int32 (*ticket_cb)(void* keys,

 unsigned char name[16], short found));

Parameter Input/Output Description

keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewServerSession to associate key material with a SSL session.

ticket_cb input The function to invoke when the server can’t find the ticket decryption key for a session ticket.

Servers

Servers should register a callback for use with the stateless session ticket resumption mechanism. This
callback will be invoked each time a client sends a session ticket and can be used as an opportunity for the
application to locate and load the correct key or to void the ticket and revert to a full handshake.

Ticket Callback Function

The callback is invoked with a void pointer representing the sslKeys_t* context, the 16-byte key name,

and the found indication of whether the correct key is already available in the server’s cached list. The

void* input is an sslKeys_t* type that should be typecast locally.

If the found parameter is 0 then the server does not currently have the session ticket key and the callback

should be used as an opportunity to find and load the keys. If the named session ticket is located, the

callback will call matrixSslLoadSessionTicketKeys using the typecast keys pointer as the first

parameter.

If the found parameter is 1 then the server holds the correct key and the callback can be used to allow the

resumption

Regardless of the value of the incoming found parameter, the return value of the callback will indicate to

MatrixSSL whether to progress with a resumed session or to use a full handshake path and issue a new
ticket. A return value of >=0 indicates the named key should be used to resume the handshake and

a return value of <0 means the key could not be found or the ticket should be discarded.

2.10 matrixSslNewSessionId

int32 matrixSslNewSessionId(sslSessionId_t **sid, void *poolUserPtr);

 18 © INSIDE Secure - 2017 - All rights reserved

Parameter Input/Output Description

sid input/output Storage for an SSL session ID used for future session resumption

poolUserPtr input Optional user context for the creation of the memory pool that will hold the session material.
Only relevant to commercial versions when USE_MATRIX_MEMORY_MANAGEMENT is
enabled. NULL otherwise.

Return Value Test Description

PS_SUCCESS 0 Success. Session ID storage ready to be passed to matrixSslNewClientSession

PS_MEM_FAIL < 0 Failure. Internal memory allocation failed

Clients

This function is only meaningful to a client wishing to perform future SSL session resumptions with a

particular server. After allocating a session ID with this call, the structure is passed to the sid parameter

of matrixSslNewClientSession where it will be populated with valid resumption credentials during the

handshake process. Subsequent calls to matrixSslNewClientSession to reconnect with the same

server should pass this same session ID to initiate the much faster session resumption handshake.

See the Session Resumption chapter in the MatrixSSL Developer’s Guide document accompanying this
release for more information.

Memory Profile

The sid parameter must be freed with matrixSslDeleteSessionId after its useful life.

The poolUserPtr value will be passed as the userPtr to psOpenPool when creating the dedicated

memory pool for the session material.

Define Dependencies

USE_CLIENT_SIDE_SSL Must be defined in matrixsslConfig.h

2.11 matrixSslClearSessionId

void matrixSslClearSessionId(sslSessionId_t *sid);

Parameter Input/Output Description

sid input/output Previously allocated SSL session ID to be cleared

Clients

This function is only meaningful to clients using the SSL session resumption feature. This function will

empty the session ID contents of the sid parameter that were previously stored during an earlier

handshake. The sid parameter will have been allocated by a previous call to matrixSslNewSessionId.

This function is simply for convenience if wishing to initiate a new session with a full handshake without

having to call matrixSslDeleteSessionId and matrixSslNewSessionId.

Define Dependencies

USE_CLIENT_SIDE_SSL Must be defined in matrixsslConfig.h

2.12 matrixSslDeleteSessionId

 19 © INSIDE Secure - 2017 - All rights reserved

void matrixSslDeleteSessionId(sslSessionId_t *sid);

Parameter Input/Output Description

sid input Previously allocated SSL session ID to be cleared and freed

Clients

This function is only meaningful to clients using the SSL session resumption feature. This function will free
the session ID that was previously allocated by matrixSslNewSessionId. It will also delete the dedicated

memory pool for commercial versions that have enabled USE_MATRIX_MEMORY_MANAGEMENT.

Define Dependencies

USE_CLIENT_SIDE_SSL Must be defined in matrixsslConfig.h

2.13 matrixSslNewClientSession

int32 matrixSslNewClientSession(ssl_t **ssl,

 const sslKeys_t *keys,

 sslSessionId_t *sessionId,

 uint32 cipherSuites[], uint16 cipherCount,

 int32 (*certValidator)(ssl_t *, psX509Cert_t *, int32),

 const char *expectedName,

 tlsExtension_t *extensions,

 int32 (*extensionCback)(ssl_t *ssl,

 unsigned short type, unsigned short len,

 void *data),

 sslSessOpts_t *options);

Parameter Input/Output Description

ssl input/output New context for this SSL session

keys input Key pointer that has been populated with the necessary certificate and key material (see

matrixSslNewKeys)

sessionId input/output SSL session id storage previously allocated by matrixSslNewSessionId

cipherSuites input Pass a value of NULL to allow the client and server to negotiate the cipher suite
automatically OR pass the integer identifiers of the specific cipher suites that the client wants
to use. See the full cipher suite list in the source code file matrixssllib.h for possible values.

cipherCount input If one or more cipher suites are specified in the cipherSuites arrary, this is the count of

those. 0 if automatic negotiation should occur.

certValidator input The function that will be invoked during the SSL handshake to see the internal authentication
status of the server certificate chain. This callback is also the opportunity for the application
to perform custom validation tests as needed

expectedName input The name of the server that the client will be connecting to. This string is used during the
x.509

certificate validation portion of the handshake. The expectedName is often a DNS. Set to

NULL to exclude this name test.

extensions input Custom CLIENT_HELLO extensions. See matrixSslNewHelloExtension for

details.

extensionCback input The function that will be invoked as a callback during the SSL handshake to see any
SERVER_HELLO extensions that have been received

options input Run time SSL options for SSL protocol version, maximum fragment length, truncated HMAC,
resumption method, elliptic curve selection, and custom user pointers. See the Session
Options section for more information

 20 © INSIDE Secure - 2017 - All rights reserved

Return Value Test Description

MATRIXSSL_REQUEST_SEND > 0 Success. The ssl_t context is initialized and the CLIENT_HELLO message has

been encoded and is ready to be sent to the server to being the SSL handshake

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Memory allocation failure

PS_PROTOCOL_FAIL < 0 Failure. SSL context is not in the correct state for creating a CLIENT_HELLO
message or there was an error encrypting the message

PS_UNSUPPORTED_FAIL < 0 Failure. The requested cipher suite was not found or library was not compiled with
client support

PS_PLATFORM_FAIL < 0 Failure. Internal call to psGetEntropy failed while encoding CLIENT_HELLO

message

Clients

Clients call this function to start a new SSL session or to resume a previous one. The session context is

returned in the output parameter ssl. The CLIENT_HELLO handshake message is internally generated

when this function is called and the typical action to take after this function returns is to retrieve that

message with matrixSslGetOutdata and send that data to the server.

This function requires a pointer to an sslKeys_t structure that was returned from a previous call to

matrixSslNewKeys and loaded with the relevant certificate and key material using matrixSslLoadRsaKey

or equivalent.

If the client wishes to resume a session with a server the sessionId parameter can be used. For the initial

handshake with a new server this parameter should point to a matrixSslNewSessionId allocated

sslSessionId_t location in which the library will store the session ID information during the handshake

process. For this reason, it is essential that the sessionId location be scoped for the lifetime of the SSL

session it is passed into. On subsequent handshakes with the same server, the client can simply pass

through this same sessionId memory location and matrixSslNewClientSession will extract the session

ID and encode a CLIENT_HELLO message that will initiate a resumed handshake with the server. The

sessionId parameter may be NULL if session resumption is not desired.

If the user wants to ensure the sessionId parameter is initialized or cleared of any previous session ID

information, matrixSslClearSessionld should be used to guarantee a full handshake.

The cipherSuites parameter can be used to force the client to send a specific set of cipher suites to the

server rather than the entire set of supported ciphers. Set this value to NULL (or cipherSuites[0] to 0)
to send the entire cipher suite list that is enabled in matrixsslConfig.h. Otherwise the values in the arrary
are the decimal integer value of the cipher suite specified in the standards. The supported values can be

found in matrixssllib.h. If cipherSuites is used to select a set of cipher suites the cipherCount parameter

must reflect the number of cipher suites that are set in the array.

An explicit cipher suite will take precedence over the cipher suite in sessionId if they do not match. So if

both sessionId and cipherSuites are passed in and the cipherSuites does not match the cipher that is

contained in the sessionId parameter, the sessionId will be cleared and the client will encode a new

CLIENT_HELLO with the cipherSuites value. If the cipherSuites value is 0 or if it identically matches

the cipher suite in the sessionId parameter, session resumption will be attempted.

The certValidator parameter is used to register a callback routine that will be invoked during the

certificate validation portion of the SSL handshake. This optional (but highly recommended) registration
will enable the application to see the internal authentication results of the server certificate, perform custom
validation checks, and pass certificate information on to end users wishing to manually validate certificates.
Additional tests a callback may want to perform on the certificate information might include date validation
and host name (common name) verification. If a certificate callback is not registered the internal public-
key authentication against the nominated Certificate Authorities will determine whether or not to continue
the handshake.

Detailed information on the certificate callback routine is found in the section The Certificate Validation
Callback Function towards the end of this document.

The expectedName should be set to confirm the name of the server is contained in the x.509 certificate for

that server. The server certificate fields (e.g. subject commonName or the dNSName field of Subject

 21 © INSIDE Secure - 2017 - All rights reserved

Alternative Name extension) against which expectedName should be checked can be specified with the

validateCertsOpts member in the session options struct. See Section 5.13.2 for details. Pass NULL if

this name test is not needed.

The extensions parameter enables the user to pass custom CLIENT_HELLO extensions to the server.

See matrixSslNewHelloExtension for more information.

The extensionCback parameter enables the user to register a function callback that will be invoked during

the parsing of SERVER_HELLO if the server has provided extensions. The callback should return < 0 if
the handshake should be terminated.

The options parameter is required and allows the client application to specify the TLS protocol version,

maximum fragment length, truncated HMAC, resumption method, and the elliptic curves it wishes to
support for the session being created. All member values must be set to 0 or NULL (if pointer type) if the
default behaviour is desired. See the Session Options section in this document for more details.

UPGRADE NOTE: Versions of matrixSslNewClientSession prior to 3.7 used a single int32 flags

parameter as the final argument and it was used to specify the TLS protocol version. The protocol version
must now be assigned to the versionFlag member of the sslSessOpts_t structure.

Memory Profile

The user must free the ssl_t structure using matrixSslDeleteSession after the useful life of the session.

The caller does not need to free the ssl parameter if this function does not return

MATRIXSSL_REQUEST_SEND.

The keys pointer is referenced in the ssl_t context without duplication so it is essential the user does not

call matrixSslDeleteKeys until all associated sessions have been deleted.

Define Dependencies

USE_CLIENT_SIDE_SSL Must be enabled in matrixsslConfig.h

ENABLE_SECURE_REHANDSHAKES Optionally disable support for RFC 5746

2.14 matrixSslNewServerSession

int32 matrixSslNewServerSession(ssl_t **ssl, const sslKeys_t *keys,

 int32 (*certCB)(ssl_t *, psX509Cert_t *, int32),

 sslSessOpts_t *options);

Parameter Input/Output Description

ssl input/output New context for this SSL session

keys input Key pointer that has been populated with the necessary certificate and key material (see
matrixSslNewKeys)

certCb input Only relevant if using client authentication. NULL if not using client authentication, otherwise the

function that will be invoked during the SSL handshake to see the internal authentication status of
the client certificate chain. This callback is also the opportunity for the application to perform
custom validation tests as needed.

options input Run time SSL options for SSL protocol version and elliptic curve selection. See the Session
Options section for more information

Return Value Test Description

PS_SUCCESS 0 Success. The ssl_t context is initialized and ready for use

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_FAILURE < 0 Failure. Internal memory allocation failure

 22 © INSIDE Secure - 2017 - All rights reserved

Servers

When a server application has received notice that a client is requesting a secure socket connection (a
socket accept on a secure port), this function should be called to initialize the new SSL session context.
This function will prepare the server for the SSL handshake and the typical action to take after returning

from this function is to call matrixSslGetReadbuf to retrieve an allocated buffer in which to copy the

incoming handshake message from the client.

This function requires a pointer to an sslKeys_t structure that was returned from a previous call to

matrixSslNewKeys and populated with key material from matrixSslLoadRsaKeys (or equivalent)

In client authentication scenarios the certValidator parameter must be used to register a callback on the

server side to perform application specific checks on the client certificate. Setting a certificate callback is
an explicit indication that client authentication will be used for this session.

If a server wants to be able to optionally enable client authentication but not require it for the initial

handshake the certificate callback should be included in matrixSslNewServerSession but then

matrixSslSetSessionOption with the SSL_OPTION_DISABLE_CLIENT_AUTH should be called immediately

after. When the server later determines client authentication should be used, it can call
matrixSslSetSessionOption with SSL_OPTION_ENABLE_CLIENT_AUTH.

Detailed information on the callback routine can be found below in the section entitled The Certificate
Validation Callback Function.

The options parameter is required and allows the server application to specify the TLS protocol version

and the elliptic curves it wishes to support for the session being created. All member values must be set to
0 or NULL (is pointer type) if the default behaviour is desired. See the Session Options section in this
document for more details.

UPGRADE NOTE: Versions of matrixSslNewServerSession prior to 3.7 used a single int32 flags

parameter as the final argument and it was used to specify the TLS protocol version. The protocol version
must now be assigned to the versionFlag member of the sslSessOpts_t structure.

Memory Profile

The user must free the ssl_t structure using matrixSslDeleteSession after the useful life of the session.

The caller does not need to free the ssl parameter if this function does not return PS_SUCCESS.

The keys pointer is referenced in the ssl_t context without duplication so it is essential the user does not

call matrixSslDeleteKeys until all associated sessions have been deleted.

Define Dependencies

USE_SERVER_SIDE_SSL Must be enabled in matrixsslConfig.h

2.15 matrixSslGetReadbuf

int32 matrixSslGetReadbuf(ssl_t *ssl, unsigned char **buf);

Parameter Input/Output Description

ssl input The SSL session context

buf output Pointer to the memory location where incoming peer data should be read into

Return Value Description

>= 0 Success. Indicates how many bytes are available in buf for incoming data

PS_ARG_FAIL Failure. Bad function parameters

 23 © INSIDE Secure - 2017 - All rights reserved

Servers and Clients

Any time the application is expecting to receive data from a peer this function must be called to retrieve the
memory location where the incoming data should be read into. By providing a buffer to read network data
into, the MatrixSSL API avoids an internal buffer copy.

The length of available bytes in buf is indicated in the return code. This is a maximum length and it is the

user’s responsibility to adhere to this size and not read data bytes beyond the given length. The
mechanism for handling incoming data beyond the returned size is discussed below.

Once the user has read data into this buffer, matrixSslReceivedData must be called to process the data

in-situ. If the return code from matrixSslReceivedData is MATRIXSSL_REQUEST_RECV this indicates that

additional data needs to be read. In this case, matrixSslGetReadbuf must be called again for an updated

pointer and buffer size to copy the additional data into.

2.16 matrixSslReceivedData

int32 matrixSslReceivedData(ssl_t *ssl, uint32 bytes, unsigned char **ptbuf,

 uint32 *ptLen);

Parameter Input/Output Description

ssl input The SSL session context

bytes input The number of bytes received

ptbuf output If the data being received is an application-level record (or an alert) the unencrypted plaintext will
be delivered to the user through this parameter. This will be a read-only pointer into the buffer
that the user can process directly or copy locally for parsing at a later time.

ptLen output If ptbuf is non-NULL this is the byte length of the data

Return Value Test Description

MATRIXSSL_REQUEST_SEND > 0 Success. The processing of the received data resulted in an SSL
response message that needs to be sent to the peer. If this return code is

hit the user should call matrixSslGetOutdata to retrieve the

encoded outgoing data.

MATRIXSSL_REQUEST_RECV > 0 Success. More data must be received and this function must be called

again. User must first call matrixSslGetReadbuf again to receive

the updated buffer pointer and length to where the remaining data should
be read into.

MATRIXSSL_HANDSHAKE_COMPLETE > 0 Success. The SSL handshake is complete. This return code is returned
to client side implementation during a full handshake after parsing the
FINISHED message from the server. It is possible for a server to receive
this value if a resumed handshake is being performed where the client
sends the final FINISHED message.

MATRIXSSL_RECEIVED_ALERT > 0 Success. The data that was processed was an SSL alert message. In this

case, the ptbuf pointer will be two bytes (ptLen will be 2) in which the

first byte will be the alert level and the second byte will be the alert
description. After examining the alert, the user must call

matrixSslProcessedData to indicate the alert was processed and

the data may be internally discarded.

MATRIXSSL_APP_DATA > 0 Success. The data that was processed was application data that the user

should process. In this return code case the ptbuf and ptLen output

parameters will be valid. The user may process the data directly from

ptbuf or copy it aside for later processing. After handling the data the

user must call matrixSslProcessedData to indicate the plain text

data may be internally discarded

MATRIXSSL_APP_DATA_COMPRESSED > 0 Success. The application data that is returned needs to be inflated with
zlib before being processed. This return code is only possible if the
USE_ZLIB_COMPRESSION define has been enabled and the peer has
agreed to compression. Compression is not advised due to TLS attacks.

 24 © INSIDE Secure - 2017 - All rights reserved

PS_SUCCESS 0 Success. This return code will be returned if the bytes parameter is 0 and
there is no remaining internal data to process. This could be useful as a
polling mechanism to confirm the internal buffer is empty. One real life
use-case for this method of invocation is when dealing with a Google
Chrome browser that uses False Start.

PS_MEM_FAIL < 0 Failure. Internal memory allocation error

PS_ARG_FAIL < 0 Failure. Bad input parameters

PS_PROTOCOL_FAIL < 0 Failure. Internal protocol error

Servers and Clients

This function must be called each time data is received from the peer. The sequence of events

surrounding this function is to call matrixSslGetReadbuf to retrieve empty buffer space, read or copy the

received data from the peer into that buffer, and then call this function to allow MatrixSSL to decode the
peer data. Notice the actual received buffer that is being processed is not passed as an input to this

function, since it is internal to the SSL session structure. However, it is important that the bytes parameter

correctly identifies how many bytes have been received, and thus be processed.

The return value from this function indicates how the user should respond next:

MATRIXSSL_REQUEST_RECV - The user must call matrixSslGetReadbuf again, copy additional peer

data into the buffer, and call this function again. Typically this indicates that a partial record has been
received, and more data must be read to complete the record. Also it can mean that a internal SSL record
was processed internally and another record is expected to follow.

MATRIXSSL_REQUEST_SEND - The library has internally generated an SSL handshake response

message to be sent to the peer. The user must call matrixSslGetOutdata, send the data to the peer, and

then call matrixSslSentData.

MATRIXSSL_HANDSHAKE_COMPLETE - This is an indication that there are no remaining SSL
handshake messages to be sent or received and the first application message can be sent. This is
generally an important return code for a client application to handle because in most protocols it is the
client that will be sending the initial application data request (such as an HTTPS GET or POST request).
In this typical usage scenario, the user will then encrypt application data using the following steps: Call

matrixSslGetWritebuf to retrieve an allocated buffer for outgoing application data, write the plaintext

data to this buffer, call matrixSslEncodeWritebuf to encrypt the data, call matrixSslGetOutdata to

retrieve the encrypted data, send that encrypted data to the peer, and finally call matrixSslSentData to

notify the library the data has been sent.

NOTE: If this code is returned, there are not any additional full SSL records in the buffer available to parse,
although there may be a partial record remaining. If there were a full SSL record available, for example an
application data record, it would be parsed and MATRIXSSL_APP_DATA would be returned instead.

MATRIXSSL_APP_DATA - This means the received data was an application record and the plain text

data is available in the ptbuf output parameter for user processing. The length of the plain text application

data is indicated by the ptLen parameter. The user can either directly parse the read only data out of this

buffer at this time or copy it aside to be parsed later. In either case it is essential the user call

matrixSslProcessedData when finished working with it, so the buffer may be internally re-used and

tested for the existence of an additional record. The user MUST parse or copy aside all unparsed data in

the buffer, as it will be overwritten after the matrixSslProcessedData call.

NOTE: If application data has been appended to a handshake FINISHED message it is possible the

MATRIXSSL_APP_DATA return code can be received without ever having received the

MATRIXSSL_HANDSHAKE_COMPLETE return code. In this case, it is implied the handshake completed

successfully because application data is being received.

 25 © INSIDE Secure - 2017 - All rights reserved

MATRIXSSL_RECEIVED_ALERT - This means an alert has been decoded that the user should examine.

The alert material will always be a two-byte plain text message available in the ptbuf parameter of the

function (ptLen will be 2). The first byte will be the alert level. It will either be SSL_ALERT_LEVEL_WARNING

or SSL_ALERT_LEVEL_FATAL. The second byte will be the alert identification as specified in the SSL and

TLS RFC documents. It is sometimes possible to continue after receiving a WARNING level alert, but
FATAL alerts should always result in the connection being closed. In either case the user should always

call matrixSslProcessedData to update the library that the plain text data can be discarded.

2.17 matrixSslGetOutdata

int32 matrixSslGetOutdata(ssl_t *ssl, unsigned char **buf);

Parameter Input/Output Description

ssl input The SSL session context

buf output Pointer to beginning of data buffer that needs to be sent to the peer

Return Value Description

> 0 The number of bytes in buf that need to be sent

0 No pending data to send

PS_ARG_FAIL Failure. Bad input parameters

Servers and Clients

Any time the application is expecting to send data to a peer this function must be called to retrieve the
memory location and length of the encoded SSL buffer. This API can also be polled to determine if there is
encoded data pending that should be sent out the network.

The length of available bytes in buf is indicated in the return code.

There are several ways data can be encoded in outdata and ready to send:

1. After a client calls matrixSslNewClientSession this function must be called to retrieve the

encoded CLIENT_HELLO message that will initiate the handshake

2. After a client or server calls matrixSslEncodeRehandshake this function must be called to retrieve

the encoded SSL message that will initiate the rehandshake

3. If the matrixSslReceivedData function returns MATRIXSSL_REQUEST_SEND this function must be

called to retrieve the encoded SSL handshake reply.

4. After the user calls matrixSslEncodeWritebuf this function must be called to retrieve the

encrypted buffer for sending.

5. After the user calls matrixSslEncodeToOutdata this function must be called to retrieve the

encrypted buffer for sending.

6. After the user calls matrixSslEncodeClosureAlert to encode the CLOSE_NOTIFY alert this

function must be called to retrieve the encoded alert for sending.

After sending the returned bytes to the peer, the user must always follow with a call to

matrixSslSentData to update the number of bytes that have been sent from the returned buf. Depending

on how much data was sent, there may still be data to send within the internal outdata, and the function
should be called again to ensure 0 bytes remain.

 26 © INSIDE Secure - 2017 - All rights reserved

2.18 matrixSslProcessedData

int32 matrixSslProcessedData(ssl_t *ssl, unsigned char **ptbuf,

 uint32 *ptlen);

Parameter Input/Output Description

ssl input The SSL session context

ptbuf output If another full application record was present in the buffer that was returned from

matrixSslReceivedData, this will be an updated pointer to this next decrypted record.

Thus, this parameter is only meaningful if the return value of this function is
MATRIXSSL_APP_DATA or MATRIXSSL_RECEIVED_ALERT.

ptlen output The length of the ptbuf parameter

Return Value Test Description

PS_SUCCESS 0 Success. This indicates that there are no additional records in the data buffer that
require processing. The application protocol is responsible for deciding the next
course of action.

MATRIXSSL_APP_DATA > 0 Success. There is a second application data record in the buffer that has been

decoded. In this return code case the ptbuf and ptlen output parameters will

be valid. The user may process the data directly from ptbuf or copy it aside for

later processing. After handling the data the user must call

matrixSslProcessedData again to indicate the plain text data may be

internally discarded.

MATRIXSSL_REQUEST_SEND > 0 Success. This return code is possible if the buffer contained an application record
followed by a SSL handshake message to initiate a re-handshake (CLIENT_HELLO
or HELLO_REQUEST). In this case the SSL re-handshake response has been
encoded and is waiting to be sent.

MATRIXSSL_REQUEST_RECV > 0 Success. This return code is possible if there is a partial second record that follows

in the buffer. Data storage must be retrieved via matrixSslGetReadbuf and

passed through the matrixSslReceivedData call again.

MATRIXSSL_RECEIVED_ALERT > 0 Success. There is a second record in the data buffer that is an SSL alert message.

In this case, the ptbuf pointer will be two bytes (ptlen will be 2) in which the

first byte will be the alert level and the second byte will be the alert description.

After examining the alert, the user must call matrixSslProcessedData again

to indicate the alert was processed and the data may be internally discarded.

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_ARG_FAIL < 0 Failure. Bad input parameters

PS_PROTOCOL_FAIL < 0 Failure. Internal protocol error

Servers and Clients

This essential function is called after the user has finished processing plaintext application data that was
returned from matrixSslReceivedData. Specifically, this function must be called if the return code from

matrixSslReceivedData was MATRIXSSL_APP_DATA or MATRIXSSL_RECEIVED_ALERT.

It is also possible that this function be called multiple times in succession if multiple SSL records have

been received in a single matrixSslReceivedData call. See the very important section Multi-Record
Buffers immediately below.

Plaintext application data is returned to the user through matrixSslReceivedData on a per-record basis

whose length is stored internal to the library as part of the buffer management. This is why there are no
input parameters regarding the length of the processed data. This function will destroy the plaintext record
that was retrieved through the previous matrixSslReceivedData call (or the previous

matrixSslProcessedData call) so if the user requires the data to persist it must be copied aside before

calling this function.

 27 © INSIDE Secure - 2017 - All rights reserved

Multi-Record Buffers

The matrixSslReceivedData function will only process a single application data record at a time.

However, it is possible there will be more than one record in the buffer. In this case the return code from

matrixSslProcessedData will indicate the status of the next record in the buffer. Any return code other

than PS_SUCCESS (0) or a failure code (< 0) is an explicit indication that an additional record is present in

the buffer and will inform the caller how it should be handled.

The multi-record return codes are a subset of the matrixSslReceivedData function and should be

handled identically so it should be a straightforward code implementation to examine the return codes from
this function in the standard processing loop. The client.c and server.c sample application files are a good
reference for how to handle multi-record buffers.

2.19 matrixSslSentData

int32 matrixSslSentData(ssl_t *ssl, uint32 bytes);

Parameter Input/Output Description

ssl input The SSL session context

bytes input Length, in bytes, of how much data has been written out to the peer

Return Value Test Description

PS_SUCCESS 0 Success. No pending data remaining

MATRIXSSL_REQUEST_SEND > 0 Success. Call matrixSslGetOutdata again and send more data to

the peer. Indicates the number of bytes sent was not the full amount of

pending data.

MATRIXSSL_REQUEST_CLOSE > 0 Success. This indicates the message that was sent to the peer was an alert
and the caller should close the session.

MATRIXSSL_HANDSHAKE_COMPLETE > 0 Success. Will be returned to the peer if this is the final FINISHED message
that is being sent to complete the handshake.

PS_ARG_FAIL < 0 Failure. Bad input parameters.

Servers and Clients

This function must be called each time data has been sent to the peer. The flow of this function is that the

user first calls matrixSslGetOutdata to retrieve the outgoing data buffer, the user sends part or all of this

data, and then calls matrixSslSentData with how many bytes were actually sent.

The return value from this function indicates how the user should respond next:

MATRIXSSL_REQUEST_SEND - There is still pending data that needs to be sent to the peer. The user

must call matrixSslGetOutdata, send the data to the peer, and then call matrixSslSentData again.

MATRIXSSL_SUCCESS - All of the data has been sent and the application will likely move to a state of
awaiting incoming data.

MATRIXSSL_REQUEST_CLOSE - All of the data has been sent and the application should close the
connection. This will be the case if the data being sent is a closure alert (or fatal alert).

MATRIXSSL_HANDSHAKE_COMPLETE - This is an indication that this peer is sending the final
FINISHED message of the SSL handshake. In general this will be an important return code for client

 28 © INSIDE Secure - 2017 - All rights reserved

applications to handle because most protocols will rely on the client sending an initial request to the server
once the SSL handshake is complete. If a client receives this return code, a resumed handshake has just
completed.

2.20 matrixSslGetWritebuf

int32 matrixSslGetWritebuf(ssl_t *ssl, unsigned char **buf,

 uint32 requestedLen);

Parameter Input/Output Description

ssl input The SSL session context

buf output Pointer to allocated storage that the user will copy plaintext application data into

requestedLen input The amount of buffer space, in bytes, the caller would like to use

Return Value Test Description

> 0 Success. The number of bytes available in buf. Might not be the same as requestedLen

PS_MEM_FAIL < 0 Failure. Internal memory allocation error

PS_ARG_FAIL < 0 Failure. Bad input parameters

PS_FAILURE < 0 Failure. Internal error managing data buffers

Servers and Clients

This function is used in conjunction with matrixSslEncodeWritebuf when the user has application data

that needs to be sent to the peer. This function will return an allocated buffer in which the user will copy
the plaintext data that needs to be encoded and sent to the peer.

The event sequence for sending plaintext application data is as follows:

1. The user first determines the length of the plaintext that needs to be sent

2. The user calls matrixSslGetWritebuf with that length to retrieve an allocated buffer.

3. The user writes the plaintext into the buffer and then calls matrixSslEncodeWritebuf to encrypt

the plaintext

4. The user calls matrixSslGetOutdata to retrieve the encoded data and length to be sent

5. The user sends the out data buffer contents to the peer

6. The user calls matrixSslSentData with the number of bytes that were sent

The internal buffer will grow to accommodate the requestedLen bytes and this function may be called

multiple times (in conjunction with matrixSslEncodeWritebuf) before sending the data out via

matrixSslGetOutdata. However, if the requested length is larger than the maximum allowed SSL

plaintext length the return code will be smaller than the requestedLen value. In this fragmentation case,

the caller must adhere to the returned length and only copy in as much plaintext as allowed. These two
functions can then be called again immediately to retrieve a new buffer to encode the remainder of the

plaintext data. It is also possible to receive a value that is smaller than requestedLen if using this function

in MatrixDTLS when the encoded size will exceed the maximum datagram size (PMTU).

This function is most appropriate when sending a file or application data that is generated on the fly into
the returned buffer. If the user wishes to encode an existing plaintext buffer the function,

matrixSslEncodeToOutdata may be used as an alternative to this function to avoid having to copy the

plaintext data into the returned buffer.

This function is specific to application level data. This function is not necessary during the SSL handshake
portion of the connection because the MatrixSSL library internally generates all SSL handshake records.

 29 © INSIDE Secure - 2017 - All rights reserved

2.21 matrixSslEncodeWritebuf

int32 matrixSslEncodeWritebuf(ssl_t *ssl, uint32 len);

Parameter Input/Output Description

ssl input The SSL session context

len input Length of plaintext data

Return Value Test Description

> 0 Success. The number of bytes in the encoded buffer to send to the peer. Will be a larger

value than the input len parameter.

PS_ARG_FAIL < 0 Failure. Bad input parameters

PS_PROTOCOL_FAIL < 0 Failure. This session is flagged for closure at the time of this call

PS_FAILURE < 0 Failure. Internal error managing buffers

Servers and Clients

This function is used in conjunction with matrixSslGetWritebuf when the user has application data that

needs to be sent to the peer. This function will encrypt the plaintext data that has been copied into the

buffer that was previously returned from a call to matrixSslGetWritebuf.

The event sequence for sending plaintext application data is as follows:

1. The user first determines the length of the plaintext that needs to be sent

2. The user calls matrixSslGetWritebuf with that length to retrieve an allocated buffer.

3. The user writes the plaintext into the buffer and then calls matrixSslEncodeWritebuf to encrypt

the plaintext

4. The user calls matrixSslGetOutdata to retrieve the encoded data to be sent

5. The user sends the out data buffer contents to the peer

6. The user calls matrixSslSentData with the number of bytes that were sent

If the user wishes to encode an existing plaintext buffer the function matrixSslEncodeToOutdata may be

used as an alternative to this function. This function is specific to application level data. This function is
not necessary during the SSL handshake portion of the connection because the MatrixSSL library
internally generates all SSL handshake records.

2.22 matrixSslEncodeToOutdata

int32 matrixSslEncodeToOutdata(ssl_t *ssl, unsigned char *ptBuf, uint32 len);

Parameter Input/Output Description

ssl input The SSL session context

ptBuf input Pointer to plaintext application data that will be encrypted into the internal outdata buffer for
sending to the peer

len input Length, in bytes, of ptBuf

 30 © INSIDE Secure - 2017 - All rights reserved

Return Value Test Description

> 0 Success. The number of bytes in the encoded buffer to send to the peer. Will be a larger

value than the input len parameter.

PS_LIMIT_FAIL < 0 Failure. The plaintext length must be smaller than the SSL specified value of 16KB. In
MatrixDTLS this return code indicates the encoded size will exceed the maximum datagram
size.

PS_MEM_FAIL < 0 Failure. The internal allocation of the destination buffer failed.

PS_ARG_FAIL < 0 Failure. Bad input parameters

PS_PROTOCOL_FAIL < 0 Failure. This session is flagged for closure.

PS_FAILURE < 0 Failure. Internal error managing buffers.

Servers and Clients

This function offers an alternative method to matrixSslEncodeWritebuf when the user has application

data that needs to be sent to the peer. This function will encrypt the plaintext data to the internal output
buffer while leaving the plaintext data untouched. This function does not require that

matrixSslGetWritebuf be called first.

This function is specific to application level data. This function is not necessary during the SSL handshake
portion of the connection because the MatrixSSL library internally generates any SSL handshake records.

The event sequence for sending plaintext application data is as follows:

1. The user calls matrixSslEncodeToOutdata with the plaintext buffer location and length.

2. The user calls matrixSslGetOutdata to retrieve the encoded data to be sent

3. The user sends the out data buffer contents to the peer

4. The user calls matrixSslSentData with the number of bytes that were sent

2.23 matrixSslEncodeClosureAlert

int32 matrixSslEncodeClosureAlert(ssl_t *ssl);

Parameter Input/Output Description

ssl input The SSL session context

Return Value Test Description

PS_SUCCESS 0 Success. The alert is ready to be retrieved and sent.

PS_PROTOCOL_FAIL < 0 Failure. SSL context not in correct state to create the alert or there was an error encrypting the
alert message.

PS_ARG_FAIL < 0 Failure. Bad input parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation error

Servers and Clients

The SSL specification highlights an optional alert message that SHOULD be sent prior to closing the
communication channel with a peer. This function generates this CLOSE_NOTIFY alert that the peer may
send to the other side to notify that the connection is about to be closed. Many implementations simply
close the connection without an alert, but per spec, this message should be sent first. Our
recommendation is to make an attempt to send the closure alert as a non-blocking message and ignore
the return value of the attempt. This way, best efforts are made to send the alert before closing, but
application code does not block or fail on a connection that is about to be closed.

After calling this function the user must call matrixSslGetOutdata to retrieve the buffer for the encoded

alert to send.

 31 © INSIDE Secure - 2017 - All rights reserved

2.24 matrixSslGetAnonStatus

void matrixSslGetAnonStatus(ssl_t *ssl, int32 *anon);

Parameter Input/Output Description

ssl input The SSL session context

anon output 1 – Anonymous
0 - Authenticated

Clients

This function returns whether or not the server session is anonymous in the anon output parameter. A

value of 1 indicates the peer is anonymous and a value of 0 indicates the connection has been fully
authenticated. An anonymous connection in this case means the application explicitly allowed the SSL
handshake to continue despite not being able to authenticate the certificate supplied by the other side with
an available Certificate Authority. The mechanism to allow an anonymous connection is for the certificate
validation callback function to return SSL_ALLOW_ANON_CONNECTION. Detailed information on the callback

routine can be found below in the section entitled The Certificate Validation Callback Function.

matrixSslGetAnonStatus is only meaningful to call after the successful completion of the SSL

handshake. Anonymous connections are not normally recommended but can be useful in a scenario in
which encryption is the only security concern. Other reasons the caller may choose to use anonymous
connections might be to allow a subset of the normal functionality to anonymous connectors or to
temporarily accept a connection while a certificate upgrade is being performed.

Servers

Calling this routine from the server side is meaningless for an implementation that has not performed client
authentication. In other words, it is not possible for one side of the connection to know if the peer believes
the connection to be anonymous or not. This is an easy rule to remember if you recall the mechanism to
allow anonymous connections is controlled through the certificate validation callback routine when the

SSL_ALLOW_ANON_CONNECTION define is returned.

2.25 matrixSslEncodeRehandshake

int32 matrixSslEncodeRehandshake(ssl_t *ssl, sslKeys_t *keys,

 int32 (*certCb)(ssl_t *, psX509Cert_t *, int32),

 uint32 sessionOption, uint32 cipherSpecs[],

 uint16 cipherCount);

Parameter Input/Output Description

ssl input The SSL session context

keys input Populated key structure if changing key material for this re-handshake. NULL if not changing

key material

certCb input Certificate callback function for the re-handshake if a change is being made to it. NULL to

keep existing callback

sessionOption input SSL_OPTION_FULL_HANDSHAKE or 0

cipherSpecs input Client specific. Cipher suites for the re-handshake. Only meaningful if the sessionOption

parameter is set to SSL_OPTION_FULL_HANDSHAKE

cipherCount input If cipherSpecs is used to nominate specific suites, this parameter must be the array size.

 32 © INSIDE Secure - 2017 - All rights reserved

Return Value Test Description

PS_SUCCESS 0 Success. Handshake message is encoded and ready for retrieval.

PS_UNSUPPORTED_FAIL < 0 Failure. Client specific. Cipher spec could not be found.

PS_PROTOCOL_FAIL < 0 Failure. SSL context not in correct state for a re-handshake or buffer management error.

PS_ARG_FAIL < 0 Failure. Bad input parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation error

PS_PLATFORM_FAIL < 0 Failure. Client specific. Error in psGetEntropy when encoding CLIENT_HELLO

Clients and Servers

Clients or servers call this function on an already secure connection to initiate a re-handshake. A re-
handshake is an encrypted SSL handshake performed over an existing connection in order to derive new
symmetric key material and/or to change the public keys or cipher suite of the secured communications.

A re-handshake can either be a full handshake or a resumed handshake and the determination is made by
the input parameters to this function.

A resumed re-handshake will be used if the keys, certCb, sessionOption, and cipherSpecs parameters

are all set to 0 (or NULL for pointers). This is an indication that there is no underlying algorithm or

handshake type change that is being made to the connection and the intention is simply to re-key the
encrypted communications.

If the keys, certCb, or cipherSpecs parameters are set, this is an indication that an “upgraded”

connection is desired and a full handshake will be performed with the new parameters.

A full re-handshake can always be guaranteed if SSL_OPTION_FULL_HANDSHAKE is passed as the

sessionOption parameter to this function.

After calling this function the user must call matrixSslGetOutdata to retrieve the buffer for the encoded

HELLO message to send.

Servers

This function is called on the server side to build a HELLO_REQUEST message to be passed to a client to
initiate a re-handshake. This is the only mechanism in the SSL protocol that allows the server to initiate a
handshake.

As with matrixSslNewServerSession the nomination of a certCb is in explicit indication that a client

authentication handshake should be performed.

Note that the SSL specification allows clients to ignore a HELLO_REQUEST message. The MatrixSSL
client does not ignore this message and will send a CLIENT_HELLO message with the current session ID
to initiate a resumed handshake.

Clients

If a client invokes this function a new CLIENT_HELLO handshake message will be internally generated.

For more information about re-handshaking and related security issues, see the Re-handshake section of
the MatrixSSL Developers Guide.

 33 © INSIDE Secure - 2017 - All rights reserved

2.26 matrixSslDisableRehandshakes

int32 matrixSslDisableRehandshakes(ssl_t *ssl);

Parameter Input/Output Description

ssl input The SSL session context

Return Value Test Description

PS_SUCCESS 0 Success.

PS_ARG_FAIL < 0 Failure. Bad input parameter

Clients and Servers

Clients or servers call this function on sessions to disable engaging in a re-handshake with a peer that is
attempting to initiate one. Once called, this function will internally generate a NO_RENEGOTIATION alert
each time a peer attempts a re-handshake.

NOTE: This ability to disable and re-enable re-handshake support overrides the “re-handshake credit”
mechanism. For more information on the “re-handshake credit” mechanism see the Re-handshake section
of the MatrixSSL Developers Guide.

2.27 matrixSslReEnableRehandshakes

int32 matrixSslReEnableRehandshakes(ssl_t *ssl);

Parameter Input/Output Description

ssl input The SSL session context

Return Value Test Description

PS_SUCCESS 0 Success.

PS_ARG_FAIL < 0 Failure. Bad input parameter

Clients and Servers

Clients or servers call this function on sessions that have been previous disabled with

matrixSslDisableRehandshakes. Once called, this function will internally generate the proper handshake

message response next time a peer attempts a re-handshake. Once re-enabled the “re-handshake credit”
mechanism is enforced as normal. One “re-handshake credit” is given when this function is called.

NOTE: This ability to disable and re-enable re-handshake support overrides the “re-handshake credit”
mechanism. For more information on the “re-handshake credit” mechanism see the Re-handshake section
of the MatrixSSL Developers Guide.

 34 © INSIDE Secure - 2017 - All rights reserved

2.28 matrixSslSetCipherSuiteEnabledStatus

int32 matrixSslSetCipherSuiteEnabledStatus(ssl_t *ssl,

 uint16 cipherId, uint32 status);

Parameter Input/Output Description

ssl input The SSL session context or NULL for a global setting

cipherId input A single SSL/TLS specification cipher suite ID. Values may be found in matrixsssllib.h

status input PS_FALSE to disabled the cipher suite or PS_TRUE to re-enable a previously disabled cipher

suite.

Return Value Test Description

PS_SUCCESS 0 Success. Cipher suite has been successfully enabled or disabled

PS_FAILURE < 0 Failure. The cipher suite specified in cipherId was not found

PS_LIMIT_FAIL < 0 Failure. No additional room to store disabled cipher. Increase the

SSL_MAX_DISABLED_CIPHERS define.

PS_ARG_FAIL < 0 Failure. Bad input parameter

Servers

This function may be called on the server side to programmatically disable (PS_FALSE) and re-enable

(PS_TRUE) cipher suites that have been compiled into the library. By default, all cipher suites compiled into

the library (as defined in matrixsslConfig.h) will be enabled and available for clients to connect with.

The disabling of a cipher suite may be done at a global level or a per-session level. If the ssl parameter to

this routine is NULL, the setting will be global. If the server wishes to disable ciphers on a per-session basis

this function must be called immediately after matrixSslNewServerSession using the new ssl_t

structure that was returned from that session creation function. If a cipher suite has been globally disabled
the per-session setting will be ignored.

The maximum number of cipher suites that may be disabled on a per-session basis is determined by the

value of SSL_MAX_DISABLED_CIPHERS. The default is 8. There is no limit to the number of cipher suites

that may be globally disabled.

2.29 matrixSslDeleteSession

void matrixSslDeleteSession(ssl_t *ssl);

Parameter Input/Output Description

ssl input The SSL session context

Servers and Clients

This function is called at the conclusion of an SSL session that was created using

matrixSslNewServerSession or matrixSslNewClientSession. This function will free the internally

allocated state and buffers associated with the session. It should be called after the corresponding socket
or network transport has been closed.

 35 © INSIDE Secure - 2017 - All rights reserved

2.30 matrixSslDeleteSessionTicketKey

int32 matrixSslDeleteSessionTicketKey(sslKeys_t *keys,

 unsigned char name[16]);

Parameter Input/Output Description

keys input The keys context

name input The name of the key to delete from the session ticket key list

Servers

If a session ticket key needs to be removed from the list, this function will perform that. If the first entry in
the list is removed the new first entry will become the key used to encrypt newly issued tickets. If the final
entry in the list is removed, the servers will no longer support the session ticket mechanism.

Return Value Test Description

PS_SUCCESS 0 Success. Key was found and deleted

PS_FAILURE < 0 Failure. The key was not found

2.31 matrixSslDeleteKeys

void matrixSslDeleteKeys(sslKeys_t *keys);

Parameter Input/Output Description

keys input A pointer to an sslKeys_t value returned from a previous call to matrixSslNewKeys

Servers and Clients

This function is called to free the key structure and elements allocated from a previous call to

matrixSslNewKeys. Any key material that was loaded into the key structure using

matrixSslLoadRsaKeys, matrixSslLoadEcKeys, matrixSslLoadDhParams, or matrixSslLoadPsk will

also be freed and the dedicated memory pool (if USE_MATRIX_MEMORY_MANAGEMENT) will be closed.

2.32 matrixSslClose

void matrixSslClose(void);

Servers and Clients

This function performs the one-time final cleanup for the MatrixSSL library. Applications should call this
function as part of their own de-initialization.

 36 © INSIDE Secure - 2017 - All rights reserved

2.33 matrixSslNewHelloExtension

int32 matrixSslNewHelloExtension(tlsExtension_t **extension,

 void *poolUserPtr);

Parameter Input/Output Description

extension output Newly allocated tlsExtension_t structure to be used as input to matrixSslLoadHelloExtension

poolUserPtr input Optional user context for the creation of the memory pool that will hold the extension material.
Only relevant to commercial versions when USE_MATRIX_MEMORY_MANAGEMENT is
enabled. NULL otherwise.

Return Value Test Description

PS_SUCCESS 0 Success. The extension parameter is ready for use

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

Clients

Facilitates support for the client side hello extension mechanism defined in RFC 3546. This function

allocates a new tlsExtension_t that matrixSslLoadHelloExtension will use to populate with extension

data. This populated extension parameter will eventually be passed to matrixSslNewClientSession in

the extensions input parameter so that CLIENT_HELLO will be encoded with the desired hello extensions.

If the client is expecting the server to reply with extension data in the SERVER_HELLO message, the

client should register an extension callback routine when calling matrixSslNewClientSession.

Memory Profile

The user must free tlsExtension_t with matrixSslDeleteHelloExtension after the useful life. The

extension data is internally copied into the CLIENT_HELLO message during the call to

matrixSslNewClientSession so matrixSslDeleteHelloExtension may be called immediately after

matrixSslNewClientSession if the user does not require further use.

2.34 matrixSslLoadHelloExtension

int32 matrixSslLoadHelloExtension(tlsExtension_t *extension,

 unsigned char *extData, uint32 extLen, uint32 extType);

Parameter Input/Output Description

extension input Previously allocated tlsExtension_t structure from a call to matrixSslNewExtension

extData input A single, fully encoded hello extension to be included in the CLIENT_HELLO message. Formats
for extensions can be found in RFC 3546

extLen input Length, in bytes, of extData

extType input The standardized extension type.

Return Value Test Description

PS_SUCCESS 0 Success. The data has been added to the extension

PS_MEM_FAIL < 0 Failure. Memory allocation failure

PS_ARG_FAIL < 0 Failure. Bad input parameters

Clients

Enables basic support for the client side hello extension mechanism, as defined in RFC 3546.

 37 © INSIDE Secure - 2017 - All rights reserved

Extension data to the extData must be formatted per specification. For example, the ServerNameList

extension must be encoded in the format per RFC 3546:

 struct {

 NameType name_type;

 select (name_type) { case host_name: HostName; } name;

 } ServerName;

 enum { host_name(0), (255) } NameType;

 opaque HostName<1..2^16-1>;

 struct { ServerName server_name_list<1..2^16-1> } ServerNameList;

The extType parameter will also be a value as specified by a standards body. The extensions defined in

RFC 3546, for example:

 enum {

 server_name(0), max_fragment_length(1),

 client_certificate_url(2), trusted_ca_keys(3),

 truncated_hmac(4), status_request(5), (65535)

 } ExtensionType;

It is possible to call this function multiple times for each extension that needs to be added. On success,

this populated extension parameter will be passed to matrixSslNewClientSession in the extensions

input parameter so that CLIENT_HELLO will be encoded with the desired hello extensions.

Note the current level of support in MatrixSSL does not include the additional handshake messages of
CERTIFICATE_URL and CERTIFICATE_STATUS that accompany some of these extension types. For
information on how to fully support these features, please contact Inside Secure.

If the client is expecting the server to reply with extension data in the SERVER_HELLO message, the

client should register an extension callback routine when calling matrixSslNewClientSession.

Memory Profile

The extData memory is internally copied into the extension structure so the caller may immediately free

extData upon return from this function.

2.35 matrixSslDeleteHelloExtension

void matrixSslDeleteHelloExtension(tlsExtension_t *extension);

Parameter Input/Output Description

extension input A pointer to an tlsExtension_t value returned from a previous call to

matrixSslNewHelloExtension

Clients

This function is called to free the structure allocated from a previous call to

matrixSslNewHelloExtension. Any extension material that was loaded into the key structure using

matrixSslLoadHelloExtension will also be freed.

It is possible to call this function immediately after matrixSslNewClientSession returns because the

extension data will have been internally copied into the CLIENT_HELLO message.

Define Dependencies

 38 © INSIDE Secure - 2017 - All rights reserved

USE_CLIENT_SIDE_SSL Must be enabled in matrixsslConfig.h

2.36 matrixSslIsSessionCompressionOn

int32 matrixSslIsSessionCompressionOn(ssl_t *ssl);

Parameter Input/Output Description

ssl input The ssl session context

Return Value Test Description

PS_TRUE > 0 Yes, the session has been negotiated to a compressed state and application data must be
compressed before encryption

PS_FALSE == 0 No, application data should not be compressed prior to encrypting

Servers and Clients

This function is called to test whether the session has been negotiated to a zlib compression state. This

would only be possible if USE_ZLIB_COMPRESSION has been enabled for the library. If this function returns

PS_TRUE, all application data must be compressed by the application prior to sending it to the MatrixSSL

public APIs for encryption.

2.37 matrixSslRegisterSNICallback

void matrixSslRegisterSNICallback(ssl_t *ssl,

 void (*sni_cb)(void *ssl, char *hostname, int32 hostnameLen,

 sslKeys_t **newKeys));

Parameter Input/Output Description

ssl input The ssl session context.

sni_cb input The callback being registered

Servers

This function is to support the Server Name Indication hello extensions. It is relevant to servers that are
expecting clients to connect with an explicit server hostname in the CLIENT_HELLO. The server will use
this mechanism to locate the correct X.509 certificate and private key to accommodate the client.

This function MUST be called immediately after matrixSslNewServerSession, prior to any data

processing, so that the callback can be registered before the parsing of the CLIENT_HELLO message.

The server still must invoke matrixSslNewServerSession with valid default keys to initialize the state for

cases in which a client does not provide a Server Name Indication extension.

When the user callback is invoked, the hostname and hostnameLen will be used to identify the proper key

material and that key material will be passed back in the output double pointer newKeys in the sslKeys_t

structure format. It is the responsibility of the application to manage the sslKeys_t structure by calling

one of the matrixSslLoad variants (matrixSslLoadRsaKeys for example) from the key load family of APIs

and to destroy the sslKeys_t structure using matrixSslDeleteKeys after the useful life.

The success or failure of locating and loading the proper key material is indicated through the successful

assignment of newKeys. If keys cannot be found or loaded a NULL assignment should be made to

newKeys. In this case the server will send a fatal UNRECOGNIZED_NAME alert to the client.

 39 © INSIDE Secure - 2017 - All rights reserved

Memory Profile

The application is responsible for managing the sslKeys_t structure that is returned in the newKeys output

parameter of the callback.

Define Dependencies

USE_SERVER_SIDE_SSL Must be enabled in matrixsslConfig.h

2.38 matrixSslCreateSNIext

int32 matrixSslCreateSNIext(psPool_t *pool, unsigned char *host,

 int32 hostLen, unsigned char **extOut, int32 *extLen);

Parameter Input/Output Description

pool input The memory pool to use in the allocation of the output buffer. NULL if not needed.

host input The hostname of the server that the client wishes to connect to

hostLen input The byte length of the host parameter

extOut output The returned formatted SNI extension buffer

extLen output The byte length of the output extOut parameter

Return Value Test Description

PS_SUCCESS == 0 Success

PS_MEM_FAIL < 0 Memory allocation failure

Clients

This utility function helps format the Server Name Indication extension for including in the CLIENT_HELLO
message. The resulting output in extOut should be fed into the matrixSslLoadHelloExtension API with

the value of EXT_SNI as the extType.

Memory Profile

The application should free the returned extOut memory buffer after the call to

matrixSslLoadHelloExtension since that function will copy the data internally.

2.39 matrixSslRegisterALPNCallback

void matrixSslRegisterALPNCallback(ssl_t *ssl,

 void (*srv_alpn_cb)(void *ssl, short protoCount,

 char *proto[MAX_PROTO_EXT],

 int32 protoLen[MAX_PROTO_EXT], int32 *index));

Parameter Input/Output Description

ssl input The ssl session context

srv_alpn_cb input The ALPN callback being registered

 40 © INSIDE Secure - 2017 - All rights reserved

Servers

This function is to support the Application Layer Protocol Negotiation hello extension defined in RFC 7301.
It is relevant to servers that are expecting clients to use this extension to negotiate the protocol that will be
used at the conclusion of the TLS handshake.

This function MUST be called immediately after matrixSslNewServerSession, prior to any data

processing, so that the callback can be registered before the parsing of the CLIENT_HELLO message.

The server ALPN callback that is registered must have a prototype of:

 void ALPN_callback(void *ssl, short protoCount, char *proto[MAX_PROTO_EXT],

 int32 protoLen[MAX_PROTO_EXT], int32 *index)

The ssl parameter is the session context and may be typecast to an ssl_t* type if access is required.

The protoCount is the number of protocols that the client has sent in the CLIENT_HELLO extension. It is

the count of the number of array entries in the proto and protoLen parameters to follow.

The proto parameter is the priority-ordered list of string protocol names the client wants to communicate

with following the TLS handshake. The protoLen parameter holds the string lengths of the proto

counterpart parameter for each protocol.

The index parameter is an output that the callback logic will assign based on the desired action:

 The index of the proto array member the server has agreed to use. The index is the zero-based
index to the array so a return value of 0 will indicate the first protocol in the list. This selection will
result in the server including its own ALPN extension in the SERVER_HELLO message with the
chosen protocol.

 A negative value assigned to index indicates the server is not willing to communicate using any of

the protocols. A fatal “no_application_protocol” alert will be sent to the client and the handshake
will terminate.

 If the callback does not assign any value to the outgoing parameter, the server will not take any
action. That is, neither a reply ALPN extension nor an alert will be sent to the client and the
handshake will continue normally.

Define Dependencies

USE_ALPN Must be enabled in matrixsslConfig.h

2.40 matrixSslCreateALPNext

int32 matrixSslCreateALPNext(psPool_t *pool, int32 protoCount,

 unsigned char *proto[], int32 protoLen[],

 unsigned char **extOut, int32 *extLen);

Parameter Input/Output Description

pool input The memory pool to use in the allocation of the output buffer. NULL if not needed.

protoCount input The count of protocols provided in the proto and protoLen parameters

proto input The string array of protocols the client is able to use in communications with the server

protoLen input The integer array of lengths corresponding to the protocols in the proto parameter

 41 © INSIDE Secure - 2017 - All rights reserved

extOut output The returned formatted ALPN extension buffer

extLen output The byte length of the output extOut parameter

Return Value Test Description

PS_SUCCESS == 0 Success

PS_MEM_FAIL < 0 Memory allocation failure

PS_ARG_FAIL < 0 The protoCount param is larger than the MAX_PROTO_EXT define or a protocol string length is too
large

Clients

This utility function helps format the Application Layer Protocol Negotiation extension for including in the
CLIENT_HELLO message. The resulting output in extOut should be fed into the

matrixSslLoadHelloExtension API with the value of EXT_ALPN as the extType.

Memory Profile

The application should free the returned extOut memory buffer after the call to

matrixSslLoadHelloExtension since that function will copy the data internally.

Define Dependencies

USE_ALPN Must be enabled in matrixsslConfig.h

2.41 matrixSslLoadOCSPResponse

int32 matrixSslLoadOCSPResponse(sslKeys_t *keys,

 const unsigned char *OCSPResponse, uint16_t OCSPResponseLen);

Parameter Input/Output Description

keys input An allocated sslKeys_t structure in which to add the OCSP response buffer

OCSPResponse input The ASN.1 X.509 OCSP response for the server’s identity certificate

OCSPResponseLen input The byte length of OCSPResponse

Return Value Test Description

PS_SUCCESS == 0 Success

PS_MEM_FAIL < 0 Memory allocation failure

PS_ARG_FAIL < 0 Input parameters are NULL or 0

Servers

A server application wishing to support OCSP stapling must keep an updated OSCP response loaded into

the key material by calling matrixSslLoadOCSPResponse. This function takes a fully formed

OCSPResponse ASN.1 buffer and loads it into the provided sslKeys_t structure. When a new OSCP

response is fetched, the same matrixSslLoadOCSPResponse API can be called to delete any previous

response and load the update.

When a client sends the status_request extension the server will look to see if an OCSP response is

available in the sslKeys_t structure and reply with a status_request extension and the

CERTIFICATE_STATUS message.

 42 © INSIDE Secure - 2017 - All rights reserved

Memory Profile

The OCSP response will be freed when matrixSslDeleteKeys is called.

Define Dependencies

USE_OCSP Must be enabled in cryptoConfig.h

2.42 matrixSslWriteOCSPRequest

int32 matrixSslWriteOCSPRequest(psPool_t *pool, psX509Cert_t *cert,

 psX509Cert_t *certIssuer, unsigned char **request,

uint32_t *requestLen);

Parameter Input/Output Description

pool input The memory pool to use in the allocation of the output buffer. NULL if not needed.

cert input The certificate for which the OCSP request is being made

certIssuer input The issuing certificate of the subject cert

request output The DER stream of the generated OCSP request

requestLen output Byte length of request

Return Value Test Description

PS_SUCCESS == 0 Success

PS_MEM_FAIL < 0 Memory allocation failure

This function will generate an OCSP request that can be sent to an OCSP responder to retrieve an
updated response.

The ./apps/ssl/server.c example application has a sample usage of this API along with how to insert the
request into an HTTP POST to send the request and receive the response from an OCSP responder.

Memory Profile

The request must be freed with psFree.

Define Dependencies

USE_OCSP Must be enabled in cryptoConfig.h

 43 © INSIDE Secure - 2017 - All rights reserved

3 MATRIXDTLS API

DTLS is an extension of the TLS protocol that enables the same strong level of security to be implemented
over non-reliable transport mechanisms such as UDP. In addition to this API documentation, the
MatrixDTLS Developer’s Guide discusses all the differences that a developer needs to know when
implementing MatrixDTLS.

3.1 Debug Configuration

The matrixsslConfig.h file contains the full set of compile-time configurable options for the protocol. Most
of the features are documented in the MatrixSSL Developer Guide.

3.2 Integration Notes

With the exception of two functions, the entire MatrixSSL public API set is available for use in MatrixDTLS
and this MatrixSSL API document is the primary technical reference for the interface for both products.

In MatrixDTLS the function matrixDtlsGetOutdata is used instead of matrixSslGetOutdata and the

function matrixDtlsSentData is used instead of matrixSslSentData. The prototypes for these functions

are identical to their MatrixSSL counterparts and are documented below.

The only other change that is required for DTLS use is to pass SSL_FLAGS_DTLS in the versionFlag

member of the options structure as the final parameter to matrixSslNewClientSession and

matrixSslNewServerSession.

3.3 matrixDtlsGetOutdata
int32 matrixDtlsGetOutdata(ssl_t *ssl, unsigned char **buf);

Parameter Input/Output Description

ssl input The SSL session context

buf output Pointer to beginning of data buffer that needs to be sent to the peer

Return Value Description

0 No pending data to send

> 0 The number of bytes in buf that need to be sent

PS_ARG_FAIL Failure. Bad input parameters

This function must be used instead of matrixSslGetOutdata

Servers and Clients

Any time the application is expecting to send data to a peer this function must be called to retrieve the
memory location and length of the encoded DTLS buffer. This API is used in conjunction with

matrixDtlsSentData and MUST be called in a loop until it returns 0.

The length of encoded bytes in buf that needs to be sent is passed through the return code and that value

will always be within the Maximum Transmission Unit that was set by default with the DTLS_PMTU define

or the updated value set by matrixDtlsSetPmtu.

 44 © INSIDE Secure - 2017 - All rights reserved

The unique DTLS functionality included in this version of GetOutdata is that it will return an encoded flight

of handshake messages that has previously been sent. This resend case must be determined by the
application itself if a timeout from the peer has occurred. This case is highlighted as number 7 in the
following list.

There are several ways data can be encoded into outdata and ready to send:

1. After a client calls matrixSslNewClientSession this function must be called to retrieve the

encoded CLIENT_HELLO message that will initiate the handshake

2. After a client or server calls matrixSslEncodeRehandshake this function must be called to

retrieve the encoded SSL message that will initiate the re-handshake

3. If the matrixSslReceivedData function returns MATRIXSSL_REQUEST_SEND this function

must be called to retrieve the encoded SSL handshake reply.

4. After the user calls matrixSslEncodeWritebuf this function must be called to retrieve the

encrypted buffer for sending.

5. After the user calls matrixSslEncodeClosureAlert to encode the CLOSE_NOTIFY alert this

function must be called to retrieve the encoded alert for sending.

6. After the user calls matrixSslEncodeToOutdata this function must be called to retrieve the

encrypted buffer for sending.

7. If the application logic has determined a DTLS timeout has occurred during the handshake phase
this function must be called to rebuild the previous flight of handshake message to be resent to
the peer.

After sending the returned bytes to the peer, the user must always follow with a call to

matrixDtlsSentData to update the number of bytes that have been sent from the returned buf. After

each call to matrixDtlsSentData this function must be called again to set the resend state machine to the

proper state.

3.4 matrixDtlsSentData

int32 matrixDtlsSentData(ssl_t *ssl, uint32 bytes);

Parameter Input/Output Description

ssl input The SSL session context

bytes input Length, in bytes, of how much data has been written out to the peer

Return Value Test Description

MATRIXSSL_REQUEST_SEND > 0 Success. Call matrixDtlsGetOutdata again and send more data to

the peer. The number of bytes sent was not the full amount of pending

data.

MATRIXSSL_SUCCESS 0 Success. No pending data remaining.

MATRIXSSL_REQUEST_CLOSE > 0 Success. If this was an alert message that was being sent, the caller should
close the session.

MATRIXSSL_HANDSHAKE_COMPLETE > 0 Success. Will be returned to the peer if this is the final FINISHED message
that is being sent to complete the handshake.

PS_ARG_FAIL < 0 Failure. Bad input parameters.

This function must be used instead of matrixSslSentData

 45 © INSIDE Secure - 2017 - All rights reserved

Servers and Clients

This function must be called each time data has been sent to the peer. The flow of this function is that the

user first calls matrixDtlsGetOutdata to retrieve the outgoing data buffer, the user sends part or all of this

data, and then calls matrixDtlsSentData with how many bytes were actually sent.

The return value from this function indicates how the user should respond next:

MATRIXSSL_REQUEST_SEND - There is still pending data that needs to be sent to the peer. The user

must call matrixDtlsGetOutdata, send the data to the peer, and then call matrixDtlsSentData again.

MATRIXSSL_SUCCESS - All of the data has been sent and the application will likely move to a state of

awaiting incoming data. The application must call matrixDtlsGetOutdata next.

MATRIXSSL_REQUEST_CLOSE - All of the data has been sent and the application should close the
connection. This will be the case if the data being sent is a closure alert (or fatal alert).

MATRIXSSL_HANDSHAKE_COMPLETE - This is an indication that this peer is sending the final
FINISHED message of the SSL handshake. In general this will be an important return code for client
applications to handle because most protocols will rely on the client sending an initial request to the server
once the SSL handshake is complete. If a client receives this return code, a resumed handshake has just
completed. For details on how to handle handshake completion see the MatrixDTLS Developer’s Guide.

The application must call matrixDtlsGetOutdata next.

3.5 matrixDtlsSetPmtu

int32 matrixDtlsSetPmtu(int32 pmtu);

Parameter Input/Output Description

pmtu input The new Path Maximum Transmission Unit size for a datagram. <0 to reset the default value

defined by DTLS_PMTU

Return Value Description

> 0 The new PMTU value

Servers and Clients

This function is used to modify the global PMTU setting for the library. It is essential that the server and
client in a DTLS connection agree on the maximum datagram size they can send and receive. Unlike
standard SSL/TLS protocols, fragmentation is not supported at the transport layer. In DTLS, a fragment
must be encoded into a single datagram. The library handles this transparently.

3.6 matrixDtlsGetPmtu

int32 matrixDtlsGetPmtu(void);

Return Value Description

> 0 The current PMTU value

 46 © INSIDE Secure - 2017 - All rights reserved

Servers and Clients

Retrieve the current PMTU value.

 47 © INSIDE Secure - 2017 - All rights reserved

4 MATRIXSSL X.509 API

For documentation of MatrixSSL’s X.509 APIs, including the certificate parsing, certificate generation and
CRL APIs, please consult the separate MatrixSSL Certificates and CRLs document, included in the
MatrixSSL Commercial and MatrixSSL FIPS Editions.

 48 © INSIDE Secure - 2017 - All rights reserved

5 SESSION OPTIONS

The final parameter to matrixSslNewClientSession and matrixSslNewServerSession is an

sslSessOpts_t pointer that allows per-session control for some TLS features.

typedef struct {

 short ticketResumption;

 short maxFragLen;

 short truncHmac;

 short extendedMasterSecret;

 short trustedCAindication;

 short OCSPstapling;

 int32 ecFlags;

 int32 versionFlag;

 void *userPtr;

 void *memAllocPtr;

 psPool_t *bufferPool;

} sslSessOpts_t;

All numeric member values must be set to 0 and pointers must be set to NULL if the default behaviour is
desired.

A summary table of possible values is given after the discussion for each feature.

5.1 TLS version

The versionFlag member of sslSessOpts_t can be optionally set if a specific TLS version is desired for

a session. See Table 3 below for possible values.

Clients

If using the versionFlag member to pass in a specific TLS protocol version, this will become the version

passed to the server in the CLIENT_HELLO message. If the server does not support the requested
version and returns an earlier protocol version in the SERVER_HELLO message the client will negotiate to
that version. In effect, this protocol setting is nominating the latest version the client is willing to support
rather than specifying the protocol that MUST be used. If a client truly wants to force a single protocol
version, the compile-time defines for disabling certain protocol versions must be used in conjunction with
this mechanism.

Servers

If using the versionFlag parameter to pass in a specific TLS protocol version, this will become the version

passed to the client in the SERVER_HELLO message. If the client has requested an earlier protocol
version in CLIENT_HELLO than what the server has forced here, the server will send a
PROTOCOL_VERSION alert to the client.

5.2 Stateless Session Ticket Resumption

The ticketResumption member is used to enable stateless session ticket resumption (RFC 5077) on a

per-session basis.

Clients

The ticketResumption member may be set to 1 if the stateless session ticket resumption method is to be

used instead of the standard method (default). The USE_STATELESS_SESSION_TICKETS compile-time

define must be enabled to support the feature.

 49 © INSIDE Secure - 2017 - All rights reserved

Servers

Servers do not use this parameter. If USE_STATELESS_SESSION_TICKET is enabled and the server has

registered some key material with matrixSslLoadSessionTicketKeys, the server will always grant the

client request if presented.

5.3 Extended Master Secret

The “extended master secret” as specified in RFC 7627 is an important security feature for TLS
implementations that use session resumption. The extended master secret feature associates the internal
TLS master secret directly to the connection context to prevent man-in-the-middle attacks during session
resumption. One such attack is a synchronizing triple handshake as described in “Triple Handshakes and
Cookie Cutters: Breaking and Fixing Authentication over TLS”.

This feature is always enabled by default in both MatrixSSL clients and servers. The

extendedMasterSecret option may be used to REQUIRE the use of the extension by the peer. The peer

agreement mechanism is the CLIENT_HELLO and SERVER_HELLO “extended_master_secret”
extension.

Clients

A client will always include the extended_master_secret extension when creating the CLIENT_HELLO
message. If the server replies with an extended_master_secret, the upgraded master secret generation
will be used. If the server does not reply with an extended_master_secret, the standard master secret
generation will be used for the connection.

A client MAY require that a server support the extended_master_secret feature by setting the

extendedMasterSecret member of sslSessOpts_t to 1. If extendedMasterSecret is set, the client will

send a fatal handshake_failure alert to the server if the extended_master_secret extension is not included
in the SERVER_HELLO.

Servers

A server will always reply with the extended_master_secret extension if the client includes it in the
CLIENT_HELLO message.

A server MAY require that a client support the extended_master_secret feature by setting the

extendedMasterSecret member of sslSessOpts_t to 1. The sslSessOpts_t structure is passed to

matrixSslNewServerSession when starting a TLS session. If extendedMasterSecret is set, the server will

send a fatal handshake_failure alert to the client if the extended_master_secret extension is not included in
the CLIENT_HELLO.

When creating the session resumption information (either the standard session table or the stateless
session ticket) the server will flag whether the extended master secret was used for the initial connection.
When a client attempts session resumption, the CLIENT_HELLO must include the
extended_master_secret extension if it was used in the initial connection. Likewise, if the initial connection
did not use the extended_master_secret the session resumption CLIENT_HELLO must also exclude that
extension. If there is a mismatch, the server will not allow the session resumption and a full handshake will
occur instead.

 50 © INSIDE Secure - 2017 - All rights reserved

5.4 Maximum Fragment Length

The maxFragLen member controls the Maximum Fragment Length Negotiation of RFC 6066

Clients

Set the maxFragLen member to 512, 1024, 2048 or 4096 if the client would like to request a smaller TLS

fragment length from the 16KB default for this session. The server is free to deny the request.

Servers

Servers may use the maxFragLen member to deny a client request to change the default. Set the value to

-1 to deny the feature for this session.

5.5 Truncated HMAC

The truncHmac member controls the Truncated HMAC negotiation of RFC 6066

Clients

Set to the truncHmac member to PS_TRUE to request a TLS session with a 10 byte truncated HMAC

feature. The server is free to deny the request.

Servers

Servers may use the truncHmac member to deny a client request to use truncated HMAC. Set the value

to -1 to deny the feature for this session.

5.6 Elliptic Curve Specification

The ecFlags member controls which set of available Elliptic Curves the client or server is willing to support

for the TLS session

NOTE: The choice of curves is also tied to the key material that is loaded in the client. For example, if a
client has loaded a Certificate Authority with a SECP192R1 public key and that curve is not specified in a

custom ecFlags list, the session initialization will fail.

Clients

Populate the ecFlags mask using the set of SSL_OPT_<NAME> curve defines to specify a specific set of

supported curves for this session. When populated, the strongest curves will be presented first in the list
of supported curves. If not populated, the default will send all curves that are compiled into the library and
will be presented in a weakest-first order.

Servers

Populate the ecFlags mask using the set of SSL_OPT_<NAME> curve defines to specify a specific set of

supported curves for this session. When populated, the server will ensure the client is sending at least one
curve that matches the custom list. If not populated, the default will match against all curves that are
compiled into the library.

 51 © INSIDE Secure - 2017 - All rights reserved

5.7 Trusted CA Indication

The trustedCAindication member controls whether the client will send its list of loaded CA files to the

server in the CLIENT_HELLO message. This feature enables TLS peers to know whether they share the

correct key material early in the handshake.

Clients

Set the trustedCAindication member to 1 to enable the feature. The MatrixSSL library uses the

cert_sha1_hash option when presenting the CA list to the server.

5.8 OCSP Revocation

The Online Certificate Status Protocol (OCSP) is an alternative to the Certificate Revocation List (CRL)
mechanism for performing certificate revocation tests on server keys. TLS integrates with OCSP in a
mechanism known as “OCSP stapling”. This feature allows the client to request that the server provide a
time-stamped OCSP response when presenting the X.509 certificate during the TLS handshake. The
primary goal for this scheme is to allow resource constrained clients to perform certificate revocation tests
without having to communicate with an OCSP Responder themselves.

The USE_OCSP define in cryptoConfig.h must be enabled for this feature to be available.

Clients

A client application can request OCSP stapling by setting the OCSPstapling member of the

sslSessOpts_t structure. This flag will trigger the creation of the Certificate Status Request extension in

the CLIENT_HELLO message. The resulting status_request extension will not specify any responder

identification hints or request extensions. This indicates that the server is free to provide whatever OCSP
response is relevant to its identity certificate.

In order to validate the signature of provided OCSP response, the client will have to hold the Certificate
Authority of the OCSP responder. There are two places the MatrixSSL library will search for this CA file.
The first place the library will look is in the CA material that is loaded in the standard

matrixSslLoadRsaKeys (or matrixSslLoadEcKeys) API. If the CA file is not located in this pre-loaded

key material, the library will next look to the server’s certificate chain. In practice, many TLS servers that
implement OCSP stapling will create a certificate chain in which the parent certificate of the primary
identity certificate also acts as the OCSP responder. At the time of the OCSP validation test, the

CERTIFICATE message will have already been processed and validated. If the client has confirmed the

server to have a valid chain of trust, it is appropriate to trust that same certificate chain to provide the
OSCP response. If the client is unable to locate the CA file for the public key of the OCSP responder the
handshake will fail.

In order to validate the time stamp of the OCSP response the client library will invoke the

checkOCSPtimestamp function x509.c. The default time window for accepting an OCSP response is 1

week and can be changed using the OCSP_VALID_TIME_WINDOW define in cryptolib.h

The OCSP stapling specification does not have guidance on how a client should behave if a server does

not provide a CERTIFICATE_STATUS message when requested. The USE_OCSP_MUST_STAPLE define is

included to allow the client application to require that the server provide the message. If

USE_OCSP_MUST_STAPLE is enabled and the client has requested CERTIFICATE_STATUS, the handshake will

abort if the server does not provide one.

 52 © INSIDE Secure - 2017 - All rights reserved

Servers

Servers do not make use of the OCSPstapling member of sslSessOpts_t. Instead, a server application

wishing to support OCSP stapling must keep an updated OSCP response loaded into the key material by

calling matrixSslLoadOCSPResponse. This function takes a fully formed OCSPResponse ASN.1 buffer and

loads it into the provided sslKeys_t structure. When a new OSCP response is fetched, the same

matrixSslLoadOCSPResponse API can be called to update the sslKeys_t structure.

When a client sends the status_request extension the server will look to see if an OCSP response is

available in the sslKeys_t structure and reply with a status_request extension and the

CERTIFICATE_STATUS message that contains the OCSP response.

5.9 User Defined Opaque TLS Session Pointer

The userPtr member of the ssl_t structure may optionally be assigned as part of the session creation

process by assigning the userPtr member of the session options. This is an opaque, application-specific

context to enable implementation to associate custom information with an SSL session. This context may
come in handy during the certificate callback, for example. It is not necessary to assign a userPtr

member at session creation time if the opaque data is not yet known. A user may set, change, or remove

the ssl->userPtr member any time during the lifecycle of the session once it is created. The value will

never be referenced inside the MatrixSSL library.

5.10 User Defined Opaque Memory Allocation Pointer

The memAllocPtr member is a customization aid for integrators that are implementing their own memory

allocation routines. This value will be passed to each psOpenPool call as the final void *userPtr

parameter for each internal invocation in the MatrixSSL library that is related to this session. This will

enable the user to associate custom data with a psPool_t context so that each memory allocation and free

can be associated with a specific TLS session.

To implement a custom memory allocation mechanism, the customer must define

USE_MATRIX_MEMORY_MANAGEMENT and implement psOpenPool, psMalloc, psFree, psRealloc, and

psClosePool. A custom psPool_t structure will also be created. This memAllocPtr will be passed to

psOpenPool where the implementation can use it to create a context to the psPool_t output. The

psPool_t is input to the psMalloc and psFree routines.

For more information, see the MatrixSSL Deterministic Memory document or contact Inside Secure
support.

5.11 User Defined TLS Buffer Memory Pool

The bufferPool pointer only applies to integrators that are using the MatrixSSL deterministic memory

feature (USE_MATRIX_MEMORY_MANAGEMENT enabled). The ssl_t structure members, inbuf and outbuf,

do not typically reside within a memory pool. If bufferPool is populated this pool will be used for the

memory management of these members. These are the structure members that hold the incoming and
outgoing TLS data during the handshake and during application data exchange. The allocation for these

buffers using psMalloc and psRealloc are done under the NULL pool by default, which results in a

standard platform malloc and realloc call. If an implementation requires that all data must be stored in a

pool or must be associated with the SSL session, this bufferPool must be populated with a memory pool

that was created by a call to psOpenPool. The user must control the lifecycle of this buffer pool by
manually closing the pool with psClosePool when the session is closed.

 53 © INSIDE Secure - 2017 - All rights reserved

NOTE: The size of the pool should be large enough to hold two 18KB data buffers. This value of 36KB
will enable the maximum SSL record sizes to be used. If the maximum fragment length feature is in use it
is possible this value could be decreased.

5.12 Peer certificate retention

By default, MatrixSSL will free the psX509Cert_t structures containing the parsed peer certificate chain

as soon as it is no longer needed in the handshake. This default behaviour can be overridden by setting

the keep_peer_certs option to 1. This causes the peer certificate deletion to be postponed to the

matrixDeleteSession call. The peer certificate can be accessed via the ssl->sec.cert pointer after

the peer certificate has been parsed.

It is also possible to retain the unparsed DER encoding of peer certificates by setting

keep_peer_cert_der option to 1. The unparsed DER will then be available in the unparsedBin

member of ssl->sec.cert.

5.13 Certificate validation options

Some aspects of MatrixSSL’s internal certificate validation procedure can be configured by setting the

fields of the validateCertsOpts member of the session options struct.

5.13.1 Maximum peer certificate chain depth

The maximum allowed depth for peer certificate chain validation can be specified with the

max_verify_depth member of validateCertsOpts. The value 0 allows for unrestricted depth; the

value 1 allows the peer certificate chain to consist of a single self-signed certificate; the value 2 allows for

a chain consisting of one leaf certificate and a trusted root certificate, and so on. If the

max_verify_depth limit is exceeded, the SSL_ALERT_UNKNOWN_CA alert will be passed to the user

certificate callback. The certificate that exceeded the limit will have its authStatus member set to

PS_CERT_AUTH_PATH_LEN and authFailFlags will have the

PS_CERT_AUTH_FAIL_VERIFY_DEPTH_FLAG flag set. Note that the max_verify_depth limit is

checked separately from the path length limit in the basicConstraints extension.

5.13.2 Expected name matching options

The client can specify the expected server identity via the expectedName argument to

matrixSslNewClientSession. By default, expectedName is matched against all of the following fields

in the peer certificate: the commonName (CN) field of the subject Distinguished Name and the dNSName,

rfc822Name and iPAddress fields in the Subject Alternative Name (SAN) extension. To restrict the

fields against which expectedName should be matched, it is strongly recommended to set the nameType

enumeration field of validateCertsOpts to one of the more specific values, described below.

NAME_TYPE_ANY expectedName is checked against everything

listed below. This option exists for compatibility
with earlier versions, where no attempt was made
to distinguish between different types of
expectedNames.

 54 © INSIDE Secure - 2017 - All rights reserved

NAME_TYPE_HOSTNAME expectedName is checked against the dNSName

field and the subject commonName.

NAME_TYPE_CN expectedName is checked against the subject

commonName. Note that by default, the subject

commonName will be checked when there are no

supported fields in the SAN. The flag
VCERTS_MFLAG_ALWAYS_CHECK_SUBJECT_CN

can be used to force a commonName check.

NAME_TYPE_SAN_DNS expectedName is checked against the dNSName

field of Subject Alternative Name

NAME_TYPE_SAN_EMAIL expectedName is checked against the

rfc822Name field of Subject Alternative Name.

NAME_TYPE_SAN_IP_ADDRESS expectedName is checked against the

iPAddress field of Subject Alternative Name.

The expectedName matching can be further tuned by setting the mFlags field of validateCertsOpts

to one or more of the following values:

VCERTS_MFLAG_ALWAYS_CHECK_SUBJECT_CN If expectedName is a hostname,

always attempt to match it with
the subject CN, even if a
supported, but non-matching
subjectAltName was presented.
Without this flag, the CN is
checked only when no supported
SAN was presented. This default
behaviour is in accordance with
Section 6.4.4 of RFC 6125, and
this flag overrides it.

VCERTS_MFLAG_SAN_EMAIL_CASE_INSENSITIVE_LOCAL_PART Use case-insensitive match for
the whole email address in the

rfc822Name field of the SAN.

Without this flag, case-sensitive
matching is used for the local-part
and case-insensitive matching for
the host-part, in accordance with
RFC 5280. This flag requires

nameType to be

NAME_TYPE_SAN_EMAIL.

Note that the expectedName matching options are only relevant to the client.

5.14 Session Options Summary Table

 Client Server

 55 © INSIDE Secure - 2017 - All rights reserved

int32 versionFlag Optional SSL protocol version.

Choices are SSL_FLAGS_SSLV3,

SSL_FLAGS_TLS_1_0,

SSL_FLAGS_TLS_1_1, or

SSL_FLAGS_TLS_1_2. Must

augment flags value with

SSL_FLAGS_DTLS for MatrixDTLS

product.

Optional SSL protocol version.

Choices are SSL_FLAGS_SSLV3,

SSL_FLAGS_TLS_1_0,

SSL_FLAGS_TLS_1_1, or

SSL_FLAGS_TLS_1_2. Must

augment flags value with

SSL_FLAGS_DTLS for MatrixDTLS

product.

short ticketResumption Set to 1 to enable stateless ticket

session resumption. The
USE_STATELESS_SESSION_TICKETS

define must be enabled to support
the feature. Standard session
resumption will be used otherwise.

N/A (Server will support stateless
session resumption if the
USE_STATELESS_SESSION_TICKETS

define is enabled)

short
extendedMasterSecret

On by default. Set to 1 to require the
use of extended_master_secret

On by default. Set to 1 to require the
use of extended_master_secret

short maxFragLen Set to 512, 1024, 2048 or 4096 if

desired. The default of 0 will result

in the maximum length of 16KB per
TLS specifications.

Set to -1 to deny a client request to
change the maximum fragment length
for the session.

short truncHmac PS_TRUE if wish to enable and send

the CLIENT_HELLO extension to
request the feature from the server

Set to -1 to deny a client request to
use a truncated HMAC for the
session.

int32 ecFlags A flag mask created from the
following supported EC curves:

SSL_OPT_SECP192R1

SSL_OPT_SECP224R1

SSL_OPT_SECP256R1

SSL_OPT_SECP384R1

SSL_OPT_SECP521R1

SSL_OPT_BRAIN224R1

SSL_OPT_BRAIN256R1

SSL_OPT_BRAIN384R1

SSL_OPT_BRAIN512R1

A flag mask created from the following
supported EC curves:

SSL_OPT_SECP192R1

SSL_OPT_SECP224R1

SSL_OPT_SECP256R1

SSL_OPT_SECP384R1

SSL_OPT_SECP521R1

SSL_OPT_BRAIN224R1

SSL_OPT_BRAIN256R1

SSL_OPT_BRAIN384R1

SSL_OPT_BRAIN512R1

void *userPtr Assign a custom opaque pointer that

will be occupy the userPtr member

of the ssl_t session structure.

Assign a custom opaque pointer that

will be occupy the userPtr member of

the ssl_t session structure.

void *memAllocPtr Becomes the userPtr parameter for

each call to psOpenPool for this

session

Becomes the userPtr parameter for

each call to psOpenPool for this

session

psPool_t *bufferPool A user provided memory pool for the

allocations of the outbuf and inbuf

data buffers for the TLS session.

A user provided memory pool for the

allocations of the outbuf and inbuf

data buffers for the TLS session.

int32 keep_peer_cert_der Keep raw DER of received peer
certificates

Keep raw DER of received peer
certificates

 56 © INSIDE Secure - 2017 - All rights reserved

int32 keep_peer_certs Keep received peer certificate chain
until the session is deleted

Keep received peer certificate chain
until the session is deleted

matrixValidateCertsOptio
ns_t validateCertsOpts

Certificate validation options. See
Section 5.13 for a description.

Certificate validation options. See
Section 5.13 for a description.

Table 1 - Session Options

 57 © INSIDE Secure - 2017 - All rights reserved

6 THE CERTIFICATE VALIDATION CALLBACK FUNCTION

This section describes the certValidator parameter of the matrixSslNewClientSession and

matrixSslNewServerSession functions.

6.1 Application Layer Certificate Acceptance

This callback offers a mid-handshake opportunity for a user to intervene in the authentication process.
After receiving the CERTIFICATE handshake message the callback will be invoked and the user can
determine whether the handshake should continue or whether a fatal alert should be sent and the
handshake terminated. The callback will be invoked with the certificate material sent by the peer as well
as the status of the X.509 and public-key (RSA or ECC) authentication performed internally by the
MatrixSSL library.

The registered callback function must have the following prototype:

int32 certValidator(ssl_t *ssl, psX509Cert_t *certInfo, int32 alert);

The ssl parameter is the session context and must be treated as read-only.

The incoming certInfo parameter is the incoming psX509Cert_t structure containing information about

the peer certificate or certificate chain. It is the certificate information in this structure that an application
will generally wish to examine. This certificate information is read-only from the perspective of the
validating callback function. The structure members are specified in the psX509Cert_t Structure section
of this document. The most important member of the structure for the purposes of the certificate callback

is the authStatus member and is detailed below.

If this authentication is operating on a certificate chain, the next member of the psX509Cert_t structure

will link to the next certificate. The next member should be the parent (or issuer) of the current certificate.

The incoming alert parameter will quickly indicate whether or not the certificate passed the internal X.509

and RSA (or other public-key authentication) authentication checks. The alert member will be

MATRIXSSL_SUCCESS (0) if the certificate chain was valid and the issuing CA was found and could

successfully authenticate the peer’s certificate.

If alert is > 0 there is at least one authentication error in the server’s certificate chain. The alert value is

a translation of an authentication problem to a TLS alert type. The TLS alert identification will be set to one
of the following based on the type of authentication error that was hit.

Value for incoming alert parameter Description

0 Authentication success. The certificate chain received from the
peer was valid and the issuing CA file was found and
successfully identified as the issuer.

SSL_ALERT_BAD_CERTIFICATE Authentication failure. This alert is an indication that the
certificate chain from the peer did not self-validate OR the
correctly named CA was found but the mathematical signature
test did not pass. It is highly recommended that the user
callback adhere to the alert and terminate the handshake.

SSL_ALERT_UNKNOWN_CA Authentication failure. This alert is an indication that the
certificate chain from the peer is valid but the issuing CA could
not be found. It is highly recommended that the user callback
adhere to the alert and terminate the handshake. This alert can

indicate that the max_verify_depth limit set in the client

session options was exceeded by the peer certificate chain.

 58 © INSIDE Secure - 2017 - All rights reserved

SSL_ALERT_ILLEGAL_PARAMETER Authentication failure. This alert is an indication that the
certificate chain from the peer correctly self-validated and the
mathematical authentication against a CA was successful,
however, an X.509 v3 certificate extension violation was
detected in the CA. This return code, then, is meant to indicate
to the user that the CA they have loaded has a problem (as
opposed to the peer having a bad certificate). The user
callback SHOULD adhere to the alert and terminate the
handshake and fix whatever problem their CA has.

SSL_ALERT_CERTIFICATE_REVOKED Authentication failure. The certificate has been checked
against a user provided Certificate Revocation List and
determined to be untrusted. It is highly recommended that the
user callback adhere to the alert and terminate the handshake.

SSL_ALERT_CERTIFICATE_EXPIRED Authentication failure. One of the certificates in the chain is no
longer valid in time. The notBefore or notAfter fields in the
certificate do not fit in the current time and date window.

SSL_ALERT_CERTIFICATE_UNKNOWN Authentication failure. The end-entity certificate name did not

match the string that was passed to expectedName in

matrixSslNewClientSession.

Table 2 - Certificate Callback Incoming “alert” Values

The alert value represents only the first authentication error of a certificate chain. In cases where a

server only has a single certificate, the alert value is always an indication of a problem on that single
certificate. However, if a server is using a certificate chain, the certificate callback might need to walk the
chain to find more specific problems than what the alert is reporting.

For example, if a use-case has determined that “minor” alerts such as SSL_ALERT_CERTIFICATE_EXPIRED

can be ignored, it is not sufficient to simply return 0 from the callback if the alert is set to this value. It could

be the case that this expiration occurred on the child-most certificate and the parent-most certificate has a
more serious authentication problem such as an invalid signature or that the CA file to authenticate it was
never found at all.

The individual certificates in the certInfo parameter will indicate their own authentication status through

the authStatus member of the psX509Cert_t structure. This is particularly important if certificate chains

are being used and the user would like to identify a specific certificate that did not internally authenticate.

The callback can walk the subject certificate chain using the next member of the structure to find the

authStatus members that are not set to PS_CERT_AUTH_PASS.

Values for authStatus member of certificate structure Description

PS_CERT_AUTH_PASS The certificate was authenticated fully

PS_CERT_AUTH_FAIL_BC BasicConstraints failure. The issuing certificate did not have
CA permissions to issue certificates

PS_CERT_AUTH_FAIL_DN DistinguishedName failure. The issuing CA did not match the
name that the subject identified as its issuer.

PS_CERT_AUTH_FAIL_REVOKED A CRL has reported the certificate has been revoked

PS_CERT_AUTH_FAIL_SIG The mathematical signature operation failed.

PS_CERT_AUTH_FAIL_AUTHKEY The authorityKeyId extension of the subject cert does not match
the subjectKeyId of the issuing certificate.

PS_CERT_AUTH_FAIL_PATH_LEN The certificate chain is longer than allowed as specified by the
pathLen field in the basisConstraints extension. If authFailFlags
has PS_CERT_AUTH_FAIL_VERIFY_DEPTH_FLAG set, then
the max_verify_depth limit specified in the session options was
exceeded instead.

PS_CERT_AUTH_FAIL_EXTENSION All the above tests passed but there was a violation of the x.509

extension rules. The authFailFlags member can be

examined to find the specific extension that failed.

Regardless of the internal authentication tests and alert value, the callback function will ultimately

determine whether or not to continue the SSL handshake through the return value it chooses.

 59 © INSIDE Secure - 2017 - All rights reserved

Return Value from the Certificate Callback Function Description

0 Continue handshake. The user callback is indicating that it
accepts the certificate material. If an authentication alert was
internally set, it will be ignored and cleared.

> 0 Fail the handshake; return a fatal alert, and close connection
with peer. The positive value is the SSL alert ID as defined in
matrixssllib.h. The incoming alert parameter may be one of
SSL_ALERT_BAD_CERTIFICATE,

SSL_ALERT_ILLEGAL_PARAMETER,

SSL_ALERT_CERTIFICATE_UNKNOWN,

SSL_ALERT_CERTIFICATE_REVOKED,

SSL_ALERT_CERTIFICATE_EXPIRED or

SSL_ALERT_UNKNOWN_CA and it is recommended those be

passed through in the return code. Other alert codes can be
found in the table below.

< 0 Fail the handshake; issue a fatal INTERNAL_ERROR alert,

and close connection with peer. This return code should be
used if the user callback code itself encounters an
unrecoverable error.

SSL_ALLOW_ANON_CONNECTION Continue handshake. The user callback is acknowledging that
the certificate has not been authenticated but it is being allowed
to continue. See the section below for more information.

Table 3 - Certificate Callback Return Value Ranges

SSL Alerts for Failed Authentication

The MatrixSSL library will perform the following tests to authenticate a certificate:

1. If the X.509 certificate is not version 3, the certificate parse will fail and
SSL_ALERT_BAD_CERTIFICATE will be sent to the peer. The certificate callback will not be
invoked in this parse failure case.

2. The X.509 basicConstraints extension will be checked to ensure the CA is truly a CA

3. The DistinguishedName issuerName will be matched against the subject subjectName.

4. The revocation status (if feature is enabled) is checked

5. The mathematical public key signature validation operation is performed.

6. The X.509 extension tests on KeyUsage and SubjectKeyId/AuthKeyId are performed

7. The path length of the certificate chain is tested against the pathLen member of the
basicConstraints extension

8. The certificate callback can be used to perform additional authentication tests and return the alert
status based on custom tests. The following table shows the possible options that may be
returned.

Fatal Alert Return Values for Certification Callback Description

SSL_ALERT_BAD_CERTIFICATE A certificate was corrupt, contained signatures that did not
verify correctly, etc. This value could already be the incoming

alert value.

SSL_ALERT_UNKNOWN_CA A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could
not be located or couldn`t be matched with a known, trusted
CA. This value could already be the incoming alert value.

SSL_ALERT_CERTIFICATE_REVOKED The certificate was revoked by its signer. This value could
already be the incoming alert value.

SSL_ALERT_CERTIFICATE_EXPIRED A certificate has expired or is not currently valid based on the

notBefore and notAfter values.

SSL_ALERT_CERTIFICATE_UNKNOWN Some other (unspecified) issue arose in processing the
certificate, rendering it unacceptable.

 60 © INSIDE Secure - 2017 - All rights reserved

SSL_ALERT_ACCESS_DENIED A valid certificate was received, but when access control was
applied, the sender decided not to proceed with negotiation.

SSL_ALERT_UNSUPPORTED_CERTIFICATE A certificate was of an unsupported type.

SSL_ALERT_ILLEGAL_PARAMETER MatrixSSL uses this alert to distinguish an X.509 extension
violation in the CA file (as opposed to an extension violation in
the received certificate chain)

Table 4 - Certificate Callback SSL_ALERT Return Values

Anonymous Connections

The callback may also choose to return SSL_ALLOW_ANON_CONNECTION if the user wishes to continue a

connection despite a PS_CERT_AUTH_FAIL_X indication on any of the certificates. If this return value is

used, the handshake will continue and will result in a secure (data encryption) but unauthenticated SSL

connection. If this return value is used, the matrixSslGetAnonStatus function may be used during the

lifetime of the connection to verify the status.

It is important to note that this anonymous connection mechanism is not related to anonymous cipher
suites. The certificate validation callback is only invoked for cipher suites that utilize public key
authentication. Therefore, it is not advised to allow anonymous connections using this mechanism. If
anonymous connections are desired, it is recommended that an anonymous cipher suite be used instead.

Server (Client-Authentication)

In client authentication handshakes the server will need to implement the callback function as well.

By default, the MatrixSSL server will immediately terminate the handshake if the client replies to the server
CERTIFICATE_REQUEST message with an empty CERTIFICATE message. If the server wishes to
potentially continue the connection, the compile time define

SERVER_WILL_ACCEPT_EMPTY_CLIENT_CERT_MSG in matrixsslConfig.h must be enabled. If enabled, the

certificate callback function will be invoked with a NULL certInfo parameter and an alert status of

SSL_ALERT_BAD_CERTIFICATE. If the user callback determines the handshake can continue without client-

authentication the handshake is effectively “downgraded” on the fly to a standard handshake.

6.2 psX509Cert_t Structure

Parsed information from X.509 certificates is stored in the psX509Cert_t structure, defined in

crypto/keyformat/x509.h. The X.509 format is somewhat complex, so we document the most

important fields here.

This data type is most important in the context of the session creation APIs in which the application
registers a custom function to be invoked during the SSL handshake to validate the peer certificate. This
registered callback function may wish to perform custom checks on the individual members of the

psX509Cert_t structures that are passed in.

version X.509 version. MatrixSSL supports v3 certificates only.

0 = v1, 1 = v2, 2 = v3

serialNumber Serial number issued to this certificate. Some certificates insert non-integer values for this member

serialNumberLen Byte length of serialNumber

 61 © INSIDE Secure - 2017 - All rights reserved

issuer Distinguished Name of the CA that issued this certificate. See x509DNattributes_t

subject Distinguished Name of this certificate. See x509DNattributes_t

notBeforeTimeType
notAfterTimeType

Format specification for the notBefore and notAfter members of this structure. Either

ASN_UTCTIME or ASN_GENERALIZEDTIME

notBefore NULL terminated UTCTime or GeneralizedTime indicating the valid start date for the certificate

notAfter NULL terminated UTCTime or GeneralizedTime indicating the valid end date for the certificate

publicKey The public key of this certificate. See psPubKey_t

pubKeyAlgorithm The algorithm identifier for the public key encryption mechanism this certificate is using. Either
OID_RSA_KEY_ALG or OID_ECDSA_KEY_ALG

certAlgorithm The algorithm identifier the issuing CA used to sign this certificate. Supported values are found in the

/* Signature algorithms */ section of the cryptolib.h file. This value must match

sigAlgorithm and that is tested internally during certificate parsing.

sigAlgorithm The verification of the signature algorithm the issuing CA used for this certificate. The /*

Signature algorithms */ section of the cryptolib.h file defines the possible values. This

value must match certAlgorithm and that is tested during certificate parsing.

signature The full CA-generated digital signature for this certificate that binds the subject to the CA private key

signatureLen The byte length of signature

sigHash The digest hash portion of the signature used internally for public key authentication

uniqueIssuerId Optional certificate field to handle possible reuse of the issuer name. See section 4.1.2.8 of RFC
3280 for more information.

uniqueIssuerIdLen Byte length of uniqueIssuerId

uniqueSubjectId Optional certificate field to handle possible reuse of the subject name. See section 4.1.2.8 of RFC
3280 for more information.

uniquesSubjectIdLen Byte length of uniqueSubjectId

extensions The X.509 certificate extensions for this certificate. See x509v3extensions_t

authStatus This flag is set on subject certificates when psX509AuthenticateCert is called. The value

indicates the public key authentication status of whether the issuer certificate is the CA of the subject
certificate. MatrixSSL calls this internally before the user’s custom certificate verification callback is
invoked so the user can examine it. The value may be;

PS_FALSE = untested (chain validation stops on first certificate to fail so this should only be set on

certificates beyond the one that did not pass)

PS_CERT_AUTH_PASS = successfully authenticated

PS_CERT_AUTH_FAIL_BC = failed authentication because the issuing certificate did not have CA

permissions

PS_CERT_AUTH_FAIL_DN = failed authentication because the Distinguished Name of the issuer

did not match the DN of the issuer

PS_CERT_AUTH_FAIL_SIG = failed authentication because the public key signature did not

validate

PS_CERT_AUTH_FAIL_EXTENSION = failed authentication because an x.509 extension

parameter was violated

 62 © INSIDE Secure - 2017 - All rights reserved

authFailFlags If authStatus is PS_CERT_AUTH_FAIL_EXTENSION this flag will further specify the problem(s):

PS_CERT_AUTH_FAIL_KEY_USAGE_FLAG – KeyUsage did not specify certificate signing

PS_CERT_AUTH_FAIL_EKU_FLAG – The ExtendedKeyUsage extension exists but did not

specify TLS usage

PS_CERT_AUTH_FAIL_SUBJECT_FLAG – The Server Name Indication extension could not be

matched

PS_CERT_AUTH_FAIL_DATE_FLAG – The certificate is expired (or not yet valid)

unparsedBin The raw ASN.1 binary stream of this certificate (if applicable).

binLen Byte length of unparsedBin

next Pointer to the next psX509Cert_t if this is a chain of certificates

Table 5 - Important psX509_t Structure Members

The DistinguishedName X.509 attribute is the plaintext description of the certificate owner and issuer.

country
state
locality
organization
orgUnit
commonName

The self-identifying collection of supported string attributes that comprise the
Distinguished Name. Distinguished Names are used to identify the subject and
issuer of an X.509 certificate.

countryType
stateType
localityType
organizationType
orgUnitType
commonNameType

These members specify the ASN.1 string type for their corresponding char* string
members (ie. countryType for country). Types can be found in the
crypto/keyformat/asn1.h header file

ASN_UTF8STRTING (8-bit chars) == 12

ASN_PRINTABLESTRING (8-bit chars) == 19

ASN_IA5STRING (8-bit chars) == 22

ASN_BMPSTRING (16-bit chars) == 30

countryLen
stateLen
localityLen
organizationLen
orgUnitLen
commonNameLen

These members specify the byte length for their corresponding char* string
members. The length includes two terminating NULL bytes.

hash A digest representation of the above attributes used for easy comparisons of DN

dnenc The unparsed ASN.1 stream of the DN (if applicable)

dnencLen Byte length of dnenc

Table 6 - x509DNattributes_t Structure Members

X.509 extensions are held in the extensions member.

bc The critical Basic Constraints extension. See x509extBasicConstraints_t

san The Subject Alternative Name extension. This extension is used to associate
additional identities with the certificate subject. Common alternate identities include
email addresses and IP addresses. See x509GeneralName_t

keyUsage The BIT STRING value of KeyUsage. For the purposes of SSL, the only interesting
bit in the encoding should be the 5th bit (of zero based) of the 2nd byte that identifies
keyCertSign.

 63 © INSIDE Secure - 2017 - All rights reserved

keyUsageLen The length of the entire BIT STRING captured in the above member.

extendedKeyUsage

extendedKeyUsageCritical

nameConstraints

certificatePolicy

policyConstraints

policyMappings

authorityInfoAccess

sk

ak

Table 7 - x509v3extensions_t Structure Members

x509extBasicConstraints_t Members

cA Indicates whether this certificate is a Certificate Authority. Possible values are:
CA_TRUE (CA), CA_FALSE (not a CA), CA_UNDEFINED (basic constraints
extension is not present in the certificate).

pathLenConstraint If cA is CA_TRUE, this member indicates the maximum length that a certificate

chain may extend beyond this CA.

x509GeneralName_t Members

id Integer identifier of the name type.

id to name mappings 0 = “other”, 1 = “email”, 2 = “DNS”, 3 =

“x400Address”, 4 = “directoryName”, 5 = “ediPartyName”, 6 = “URI”, 7 =
“iPAddress”, 8 = “registeredID”, x = “unknown”

name String identifier for the name type. Possible values are the quoted names from the
list above.

data The data value for the alternate name

dataLen Byte length of data

next The next x509GeneralName_t alternate name in this extension.

 64 © INSIDE Secure - 2017 - All rights reserved

7 QUICK REFERENCE

API Description API Dependencies

matrixSslOpen

matrixSslClose

One time initialization and
clean up for MatrixSSL

matrixSslNewKeys

matrixSslDeleteKeys

matrixSslLoadRsaKeys

Key management functions matrixSslNewKeys must be called
prior to calling matrixSslLoadRsaKeys

matrixSslNewClientSession

matrixSslNewServerSession

matrixSslDeleteSession

Respective session
initialization and common
session deletion

matrixSslGetOutdata Retrieve encoded data that is
ready to be sent out over the
wire to the peer

Must be followed by a call to
matrixSslSentData

matrixSslReceivedData Any data received from the
peer must be passed to this
function

An empty data buffer must have been
retrieved by a prior call to
matrixSslGetReadbuf

matrixSslProcessedData Must be called each time the
application is done processing
plaintext data

Plaintext data will only be given to the
application when the return code from
matrixSslReceivedData or
matrixSslProcessedData is
MATRIXSSL_APP_DATA or
MATRIXSSL_RECEIVED_ALERT

matrixSslGetWriteBuf

matrixSslEncodeWriteBuf

 - OR -

matrixSslEncodeToOutdata

Used for encoding plaintext
application data after SSL
handshake that will be sent to
the peer

matrixSslGetWriteBuf must be called
to get an empty buffer in which to copy
plaintext. matrixSslEncodeWriteBuf
must be called to do the actual
encryption. Encrypted data must be
retrieved with matrixSslGetOutdata

 65 © INSIDE Secure - 2017 - All rights reserved

APPENDIX A - LIST OF TABLES

Table 1 - Session Options ... 56

Table 2 - Certificate Callback Incoming “alert” Values ... 58

Table 3 - Certificate Callback Return Value Ranges ... 59

Table 4 - Certificate Callback SSL_ALERT Return Values ... 60

Table 5 - Important psX509_t Structure Members ... 62

Table 6 - x509DNattributes_t Structure Members ... 62

Table 7 - x509v3extensions_t Structure Members .. 63

