

© INSIDE Secure - 2017 - All rights reserved

MatrixSSL Getting Started

Version 3.9

 2 © INSIDE Secure - 2017 - All rights reserved

Contents

1 OVERVIEW... 3

1.1 Who is this Document For? ... 3

2 COMPILING AND TESTING MATRIXSSL .. 4

2.1 POSIX Platforms using Makefiles ... 4

2.1.1 Preparation ... 4

2.1.2 Building the Source .. 4

2.1.3 SSL Self-Test Application ... 4

2.1.4 Sockets-Based Client and Server Applications ... 5

2.1.5 Debug Builds vs. Release Builds .. 6

 3 © INSIDE Secure - 2017 - All rights reserved

1 OVERVIEW

This Getting Started Guide explains how to quickly compile and test the MatrixSSL package on supported
reference platforms. This guide also contains instructions on building and running the client and server
applications provided in the package.

1.1 Who is this Document For?
 Software developers working on a supported platform that want to create a development

environment for integrating MatrixSSL security into a custom application

 Software developers who want to port MatrixSSL to a new platform

 Anyone wanting to learn more about MatrixSSL

 4 © INSIDE Secure - 2017 - All rights reserved

2 COMPILING AND TESTING MATRIXSSL

2.1 POSIX Platforms using Makefiles
The POSIX classification in MatrixSSL encompasses support for several operating system platforms
including Mac OSX 10.10 and most UNIX/LINUX varieties. This is the default platform for the Makefile
system that is provided in the package and should be the first build option if you are unsure of your
platform configuration.

2.1.1 Preparation

The development platform must have the following tools installed:

 The tar utility for expanding the package (or other decompression utility supporting .tgz files)

 A C source code compiler and linker (GCC is the default in the provided Makefile system)

 The make tool

2.1.2 Building the Source

1. From the command prompt, unpack the zipped tar image.

$ tar -xzvf matrixssl-3-9-1-open.tgz

2. Change directory to the root of the package and build the MatrixSSL library

$ cd matrixssl-3-9-1-open

$ make

3. Confirm there were no compile errors and that the MatrixSSL libraries have been built. A
successful build will result in 3 binaries. There should be a shared library for each of the three
modules of ./core/libcore_s.a, ./crypto/libcrypt_s.a, and ./matrixssl/libssl_s.a. Applications link and
interface with these libraries through the MatrixSSL public API set, which is documented in the
MatrixSSL API reference, included in the distribution.

2.1.3 SSL Self-Test Application

Source code for a self-test application to exercise the SSL handshake and data exchange functionality of
the MatrixSSL library is provided with the package. The following optional steps will enable the developer
to build and run the test application to confirm the SSL protocol is fully functional.

1. Having successfully built the static library from the Building the source steps above, change
directories to the test folder where the sslTest.c source is located and compile the application

$ cd matrixssl/test

$ make

2. Run the sslTest application from the command line. This sample output shows a successful run

of the test using the default configuration of the open source package.

Testing TLS_RSA_WITH_AES_256_CBC_SHA suite

 Standard handshake test

 PASSED: Standard handshake

 Re-handshake test (client-initiated)

 PASSED: Re-handshake

 Resumed handshake test (new connection)

 PASSED: Resumed handshake

 5 © INSIDE Secure - 2017 - All rights reserved

 Re-handshake test (server initiated)

 PASSED: Re-handshake

 Resumed Re-handshake test (client initiated)

 PASSED: Resumed Re-handshake

 Resumed Re-handshake test (server initiated)

 PASSED: Resumed Re-handshake

 Change cert callback Re-handshake test

 PASSED: Upgrade cert callback Re-handshake

 Change keys Re-handshake test

 PASSED: Upgrade keys Re-handshake

 Change cipher suite Re-handshake test

 PASSED: Change cipher suite Re-handshake

Testing TLS_RSA_WITH_AES_128_CBC_SHA suite

 Standard handshake test

 PASSED: Standard handshake

 Re-handshake test (client-initiated)

 PASSED: Re-handshake

 Resumed handshake test (new connection)

 PASSED: Resumed handshake

 Re-handshake test (server initiated)

 PASSED: Re-handshake

 Resumed Re-handshake test (client initiated)

 PASSED: Resumed Re-handshake

 Resumed Re-handshake test (server initiated)

 PASSED: Resumed Re-handshake

 Change cert callback Re-handshake test

 PASSED: Upgrade cert callback Re-handshake

 Change keys Re-handshake test

 PASSED: Upgrade keys Re-handshake

 Change cipher suite Re-handshake test

 PASSED: Change cipher suite Re-handshake

2.1.4 Sockets-Based Client and Server Applications

Source code for TCP/IP sockets-based client and server applications are provided with the MatrixSSL
package. The following optional steps will enable the developer to build and run the applications to confirm
the development platform is configured for MatrixSSL integration.

1. Having successfully built the library from the Building the Source steps above, change directories
to the apps/ssl folder where the client.c and server.c source files are located and compile the

applications.

$ cd apps/ssl

$ make

2. Run the server application from the command line

$./server

Listening on port 4433

3. In a second shell environment, run the client application using the Bash shell script and verify two
connections were made to the running server. Client trace in the successful case:

$./runClient.sh

client https://127.0.0.1:4433/ new:1 resumed:1 cipher count:1

version:3.3

=== 1 new connections ===

Validated cert for: Sample Matrix RSA-1024 Certificate.

SEND: [GET / HTTP/1.0

User-Agent: MatrixSSL/3.9.0-COMM

Accept: */*

Content-Length: 0

]

 6 © INSIDE Secure - 2017 - All rights reserved

RECV PARSED: [HTTP/1.0 200 OK]

RECV PARSED: [Server: MatrixSSL/3.9.0-COMM]

RECV PARSED: [Pragma: no-cache]

RECV PARSED: [Cache-Control: no-cache]

RECV PARSED: [Content-type: text/plain]

RECV PARSED: [Content-length: 9]

RECV COMPLETE HTTP MESSAGE

N

146 bytes received

0 msec (0 avg msec/conn SSL handshake overhead)

0 msec (0 avg msec/conn SSL data overhead)

=== 1 resumed connections ===

SEND: [GET / HTTP/1.0

User-Agent: MatrixSSL/3.9.0-COMM

Accept: */*

Content-Length: 0

]

RECV PARSED: [HTTP/1.0 200 OK]

RECV PARSED: [Server: MatrixSSL/3.9.0-COMM]

RECV PARSED: [Pragma: no-cache]

RECV PARSED: [Cache-Control: no-cache]

RECV PARSED: [Content-type: text/plain]

RECV PARSED: [Content-length: 9]

RECV COMPLETE HTTP MESSAGE

R

146 bytes received

0 msec (0 avg msec/conn SSL handshake overhead)

0 msec (0 avg msec/conn SSL data overhead)

2.1.5 Debug Builds vs. Release Builds

The default compiler options in the Makefile build system use the –O3 optimization flag for desktop
systems to create a release quality MatrixSSL library. If you wish to create a debug version of the library

(and applications) edit the common.mk file at the top of the package directory and change the BUILD

macro to debug rather than the release default. To optimize for size, change the flag to –Os

